
Prolog – Lists & Pattern
Matching
 The unification operator: =/2

 The expression A=B is true if A and B are
terms and unify (look identical)

arity

?- a = a.
 true
?- a = b.
 false
?- a = X.
 X = a
?- X = Y.
 true

Read Sections 1&2
of Prolog Tutorial
online

NOTE: This is where Prolog really shines as an AI programming language:
Knowledge representation - List
Knowledge processing - pattern matching

Prolog – Lists & Pattern
Matching
 Lists – a convenient way to represent

abstract concepts
 Prolog has a special notation for lists.

[a]
[a,b,c]
[]

Empty
List

[bmw, vw, mercedes]
[chicken, turkey, goose]

Prolog – Lists & Pattern
Matching
 Pattern Matching in Lists

?- [a, b] = [a, X].
X = b

?- [a, b] = X.
X = [a, b]

But:

?- [a, b] = [X].
no

 The Head-Tail Operator: [H|T]

?- [a,b,c] = [X|Y];
X = a
Y = [b,c]

?- [a] = [Q|P];
Q = a
P = []

Prolog – Lists

The predicate first/2: accept a list in the first argument and return
the first element of the list in second argument.

first(List,E) :- List = [H|T], E = H;

Prolog – Lists

The predicate last/2: accept a list in the first argument and return
the last element of the list in second argument.

Recursion: there are always two parts to a recursive definition;
the base and the recursive step.

last([A],A).
last([A|L],E) :- last(L,E).

