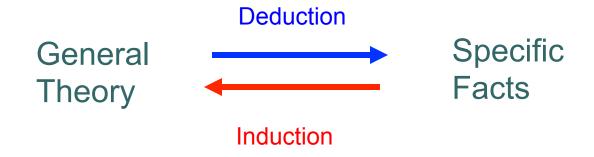


Machine Learning

 A completely different way to have an agent acquire the appropriate abilities to solve a particular goal is via machine learning.

Machine Learning


- What is Machine Learning?
 - Programs that get better with experience given a task and some performance measure.
 - Learning to classify news articles
 - Learning to recognize spoken words
 - Learning to play board games
 - Learning to navigate a virtual world
- Usually involves some sort of <u>inductive</u> <u>reasoning</u> step.

Chap 7 & 11 (online book)

Inductive Reasoning

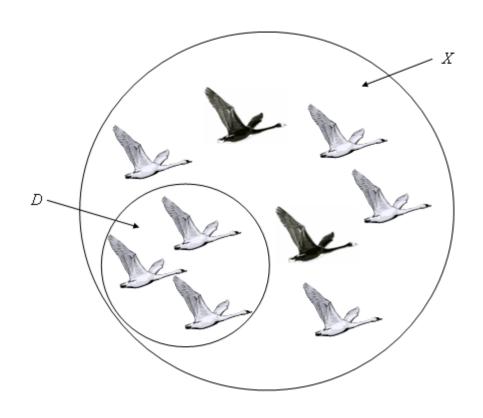
- Deductive reasoning (rule based reasoning)
 - From the general to the specific
- Inductive reasoning
 - From the specific to the general

Note: not to be confused with mathematical induction!

Example

- Facts: every time you see a swan you notice that the swan is white.
- Inductive step: you infer that all swans are white.

Inference is the act or process of drawing a conclusion based solely on what one already knows.



Observation

- Deduction is "truth preserving"
 - If the rules employed in the deductive reasoning process are sound, then, what holds in the theory will hold for the deduced facts.
- Induction is NOT "truth preserving"
 - It is more of a statistical argument
 - The more swans you see that are white, the more probable it is that all swans are white. But this does not exclude the existence of black swans.

Observation

D = observations

X = universe of all swans

Different Styles of Machine Learning

- Supervised Learning
 - The learning needs explicit examples of the concept to be learned (e.g. white swans...)
- Unsupervised Learning
 - The learner discovers autonomously any structure in the domain that might represent an interesting concept

Knowledge - Representing what has been learned

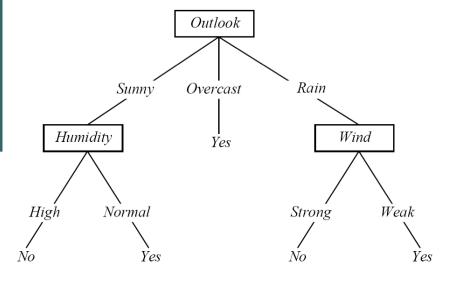
- Symbolic Learners (transparent models)
 - If-then-else rules
 - Decision trees
 - Association rules
- Sub-Symbolic Learners (non-transparent models)
 - Neural Networks
 - Clustering (Self-Organizing Maps, k-Means)
 - Support Vector Machines

Why Learning?

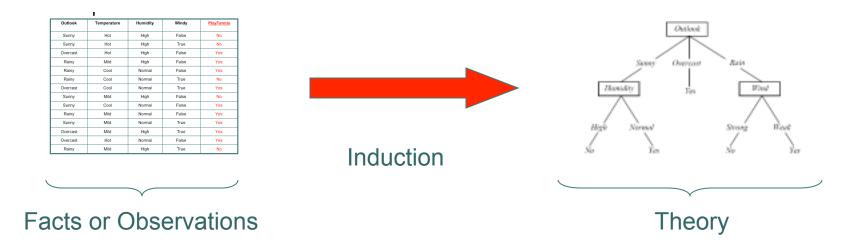
- Scripting works well if there is a well understood relationship between the input (senses) and the actions to be taken
- Learning works well where no such clear relationship exists
 - Perhaps there are too many special cases to consider
 - Perhaps there is a non-linear numerical relationship between the input and the output that is difficult to characterize
- Learning can be adaptive...online learning where the agent constantly evaluates its actions and adjusts its acquired knowledge
 - Very difficult to achieve in scripting

Decision Trees

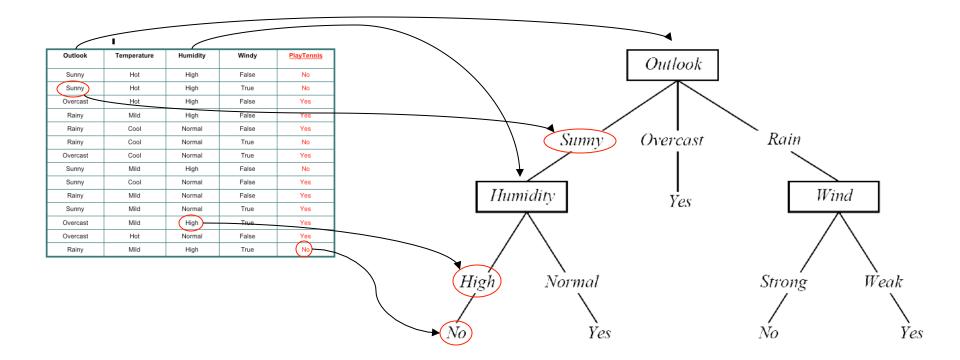
- Learn from labeled observations supervised learning
- Represent the knowledge learned in form of a tree


Example: learning when to play tennis.

 Examples/observations are days with their observed characteristics and whether we played tennis or not

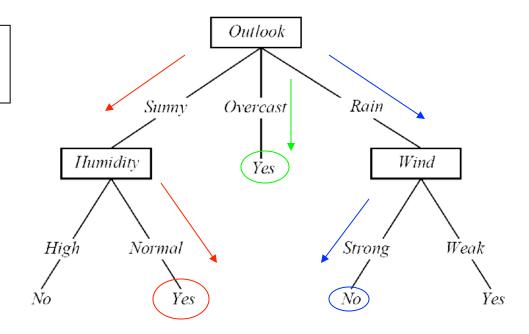

Play Tennis Example

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No


Decision Tree Learning

Interpreting a DT

DT = Decision Tree

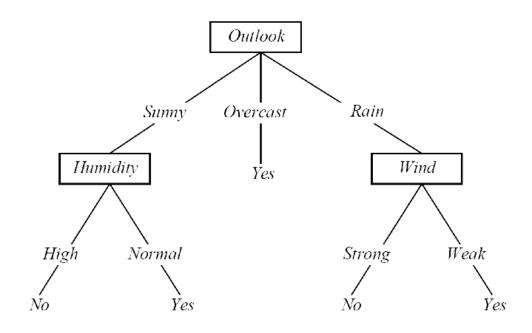


- \Rightarrow A DT uses the <u>attributes</u> of an observation table as nodes and the <u>attribute values</u> as links.
- \Rightarrow <u>All</u> attribute values of a particular attribute need to be represented as links.
- ⇒ The target attribute is special its values show up as leaf nodes in the DT.

Interpreting a DT

Each <u>path</u> from the root of the DT to a leaf can be interpreted as a <u>decision rule</u>.

IF Outlook = Sunny AND Humidity = Normal THEN Playtennis = Yes


IF Outlook = Overcast THEN Playtennis = Yes

IF Outlook = Rain AND Wind = Strong THEN Playtennis = No

DT: Explanation & Prediction

Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

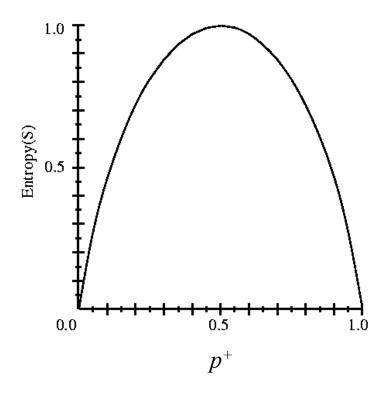
Explanation: the DT summarizes (explains) all the observations in the table perfectly \Rightarrow 100% Accuracy

<u>Prediction</u>: once we have a DT (or model) we can use it to make predictions on observations that are not in the original training table, consider:

Outlook = Sunny, Temperature = Mild, Humidity = Normal, Windy = False, Playtennis = ?

Constructing DTs

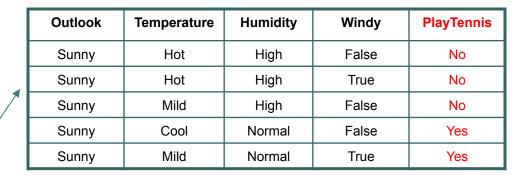
- How do we choose the attributes and the order in which they appear in a DT?
 - Recursive partitioning of the original data table
 - Heuristic each generated partition has to be "less random" (entropy reduction) than previously generated partitions



Entropy

S is a sample of training examples p^+ is the proportion of positive examples in S p^- is the proportion of negative examples in S Entropy measures the impurity (randomness) of S

	Outlook	Temperature	Humidity	Windy	PlayTennis
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
	Overcast	Hot	High	False	Yes
	Rainy	Mild	High	False	Yes
	Rainy	Cool	Normal	False	Yes
_	Rainy	Cool	Normal	True	No
S 〈	Overcast	Cool	Normal	True	Yes
	Sunny	Mild	High	False	No
	Sunny	Cool	Normal	False	Yes
	Rainy	Mild	Normal	False	Yes
	Sunny	Mild	Normal	True	Yes
	Overcast	Mild	High	True	Yes
	Overcast	Hot	Normal	False	Yes
	Rainy	Mild	High	True	No


$$Entropy(S) = Entropy([9+,5-]) = .94$$

$$Entropy(S) = -p^+ \log_2 p^+ - p^- \log_2 p^-$$

Partitioning the Data Set

Sunny

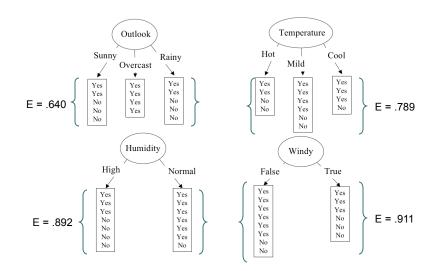
Overcast **Outlook**

Rainy

Outlook	Temperature	Humidity	Windy	PlayTennis
Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Average Entropy = .64

(weighted .69)


	Outloo
	Rainy
•	Dainy

Outlook	Temperature	Humidity	Windy	PlayTennis
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Partitioning in Action

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Recursive Partitioning

Partition(*Examples*, *TargetAttribute*, *Attributes*)

Examples are the training examples. TargetAttribute is a binary (+/-) categorical dependent variable and Attributes is the list of independent variables which are available for testing at this point. This function returns a decision tree.

- Create a *Root* node for the tree.
- If all *Examples* are positive then return *Root* as a leaf node with label = +.
- Else if all *Examples* are negative then return *Root* as a leaf node with label = -.
- Else if *Attributes* is empty then return *Root* as a leaf node with label = most common value of TargetAttribute in Examples.
- Otherwise
 - \circ A := the attribute from Attributes that reduces entropy the most on the Examples.
 - $\circ Root := A$
 - \circ F or each $v \in values(A)$
 - Add a new branch below the *Root* node with value A = v
 - L et Examples, be the subset of Examples where A = v
 - If *Examples*_v is empty then add new leaf node to branch with label = most common value of *TargetAttribute* in *Examples*.
 - Else add new subtree to branch Partition(*Examples_v*, *TargetAttribute*, *Attributes* – {*A*})
- Return Root

Recursive Partitioning

Our data set:

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Recursive Partition

Sunny	Hot	High	False	No
Party		High	True	No
O ver t as	IM	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Outlook

Recursive Partitioning

Outlook

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Sunny

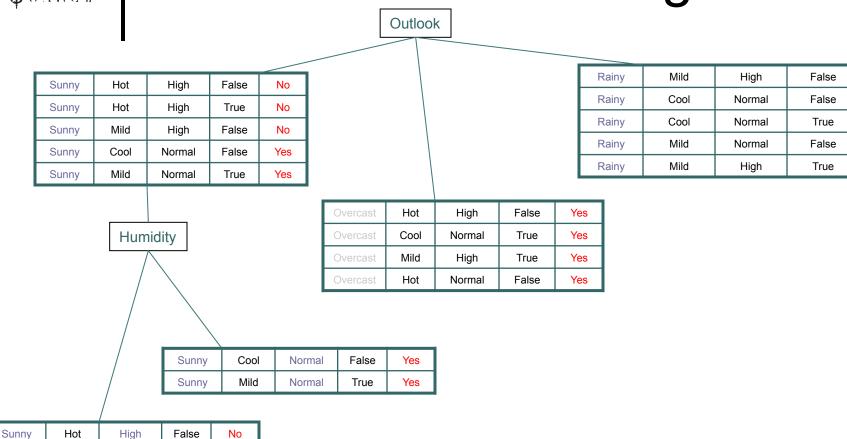
Sunny

Hot

Mild

High

High


True

False

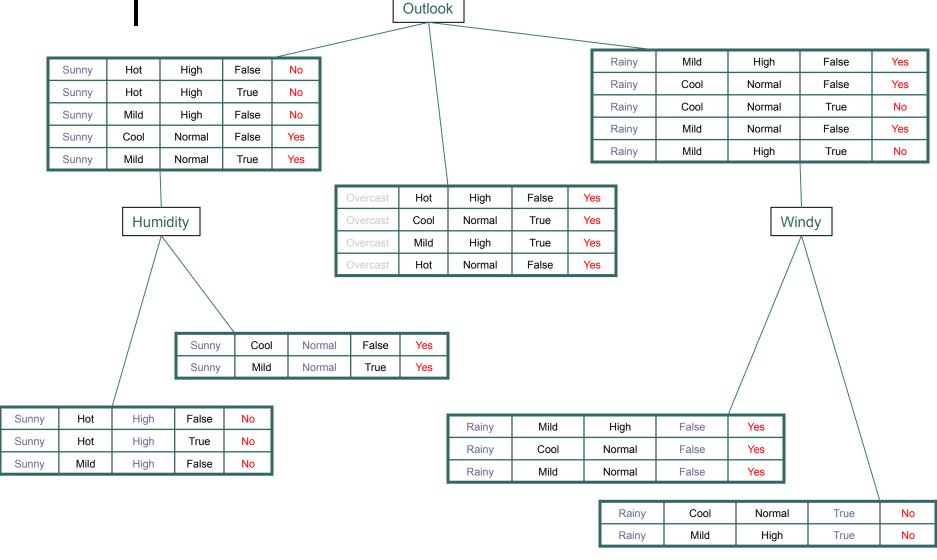
No

No

Recursive Partitioning

Yes

Yes


No

Yes

No

Recursive Partitioning

