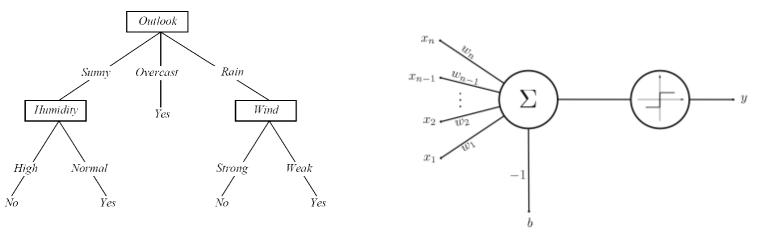


We have seen machine learning with different representations:

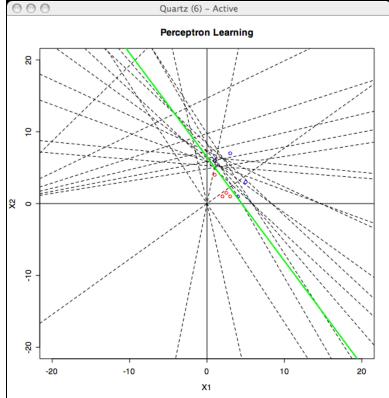
- Decision trees -- symbolic representation of various decision rules -- "disjunction of conjunctions"
- (2) Perceptron -- learning of weights that represent alinear decision surface classifying a set of objects into two groups



Different representations give rise to different <u>hypothesis</u> or <u>model spaces</u>. Machine <u>learning algorithms search</u> these model spaces for the <u>best fitting</u> <u>model</u>.

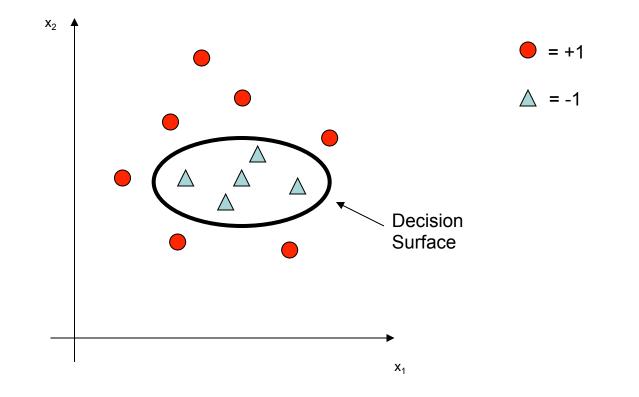
Perceptron Learning Revisited

Initialize \overline{w} and b to random values. repeat for each $(\overline{x}_i, y_i) \in D$ do if $\hat{f}(\overline{x}_i) \neq y_i$ then Update \overline{w} and b incrementally. end if end for until D is perfectly classified. return \overline{w} and b



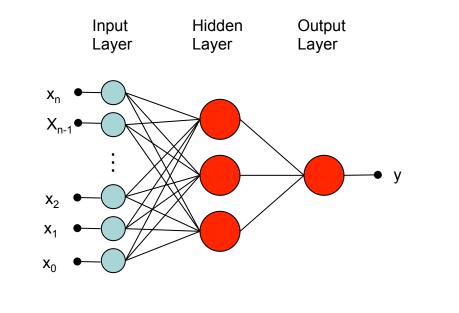
Constructs a line (hyperplane) as a classifier.

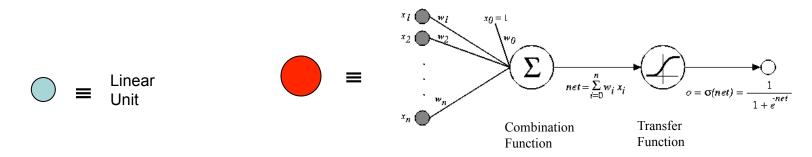
What About Non-Linearity?

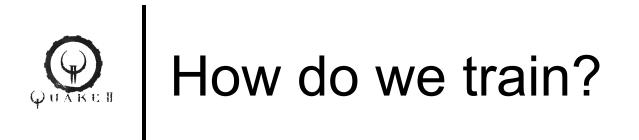


Can we learn this decision surface? ... Yes! Multi-Layer Perceptronsl.

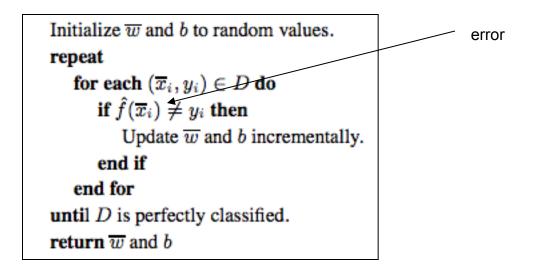
Multi-Layer Perceptrons







Perceptron was easy:

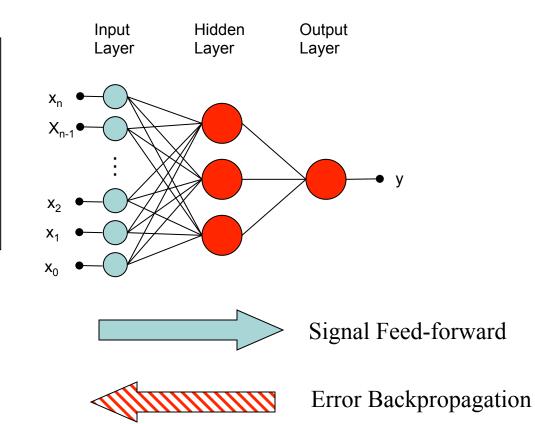


Every time we found an error of the predicted value $f(x_i)$ compared to the label in the training set y_i , we update w and b.

Artificial Neural Networks

Feed-forward with Backpropagation

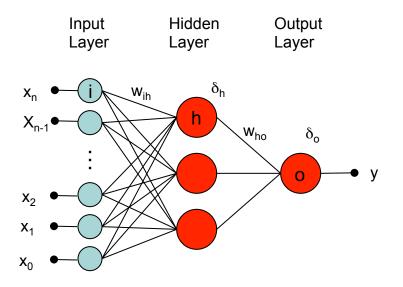
We have to be a bit smarter in the case of ANNs: compute the error (feed forward) and then use the error to update all the weights by propagating the error back.



Backpropagation Algorithm

Note: this algorithm is for a NN with a single output node o and a single hidden layer. It can easily be generalized. Initialize the weights in the network (often randomly) Do For each example e in the training set // forward pass y = compute neural net output t = label for e from training data Calculate error $\Delta = (t - y)^2$ at the output units // backward pass Compute error δ_0 for weights from a hidden node h to the output node o using Δ Compute error δ_0 for weights from an input node i to hidden node h using δ_0 Update the weights in the network Until all examples classified correctly or stopping criterion satisfied Return the network

 $\Delta = (t - y)^{2}$ $\delta_{o} = y(1 - y)\Delta$ $w_{ho} \leftarrow w_{ho} + \alpha_{o}\delta_{o}$ $\delta_{h} = y(1 - y)w_{ho}\delta_{o}$ $w_{ih} \leftarrow w_{ih} + \alpha_{h}\delta_{h}$



This only works because

$$\delta_o = y(1-y)\Delta = \frac{\partial \Delta}{\partial \vec{w} \cdot \vec{x}} = \frac{\partial (t-y)^2}{\partial \vec{w} \cdot \vec{x}}$$

and the output y is differentiable because the transfer function is differentiable. Also note, everything is based on the *rate of change* of the error...we are searching in the direction where the rate of change will minimize the output error.

Neural Network Learning

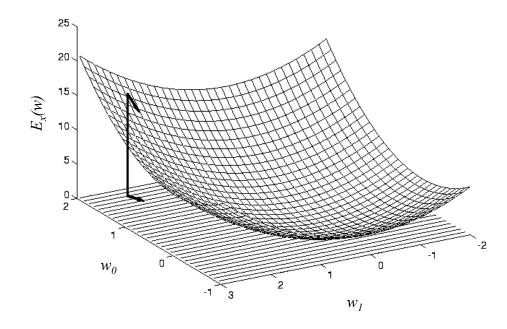
• Define the network error as

$$\Delta_x = (t - y)^2$$

for some $x \in X$, where *i* is an index over the output units.

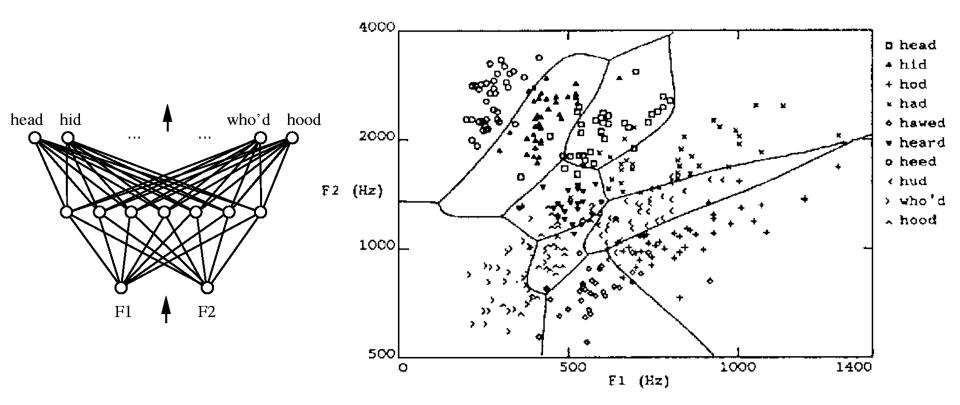
- Let $\Delta_x(w)$ be the error E_x as a function of the weights w.
- Use the gradient (slope) of the error surface to guide the search towards appropriate weights:

$$\Delta_{\mathcal{W}_k} = -\eta \frac{\partial \Delta_x}{\partial_{\mathcal{W}_k}}$$



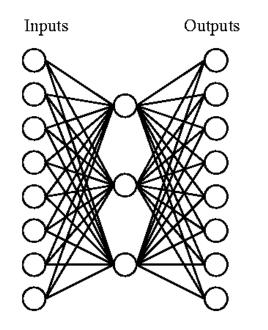
Representational Power

- Every bounded continuous function can be approximated with arbitrarily small error by a network with one hidden layer.
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers.



Hidden Layer Representations

Target Function:



Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

Inputs

Hidden Layer Representations

Outputs	Input	Hidden				Output			
P	Values								
HD .	10000000	\rightarrow .	89	.04	.08	\rightarrow	10000000		1
	01000000	\rightarrow .	01	.11	.88	\rightarrow	01000000		1 0
	00100000	\rightarrow .	01	.97	.27	\rightarrow	00100000		0
	00010000	\rightarrow .	99	.97	.71	\rightarrow	00010000		1
	00001000	\rightarrow .	03	.05	.02	\rightarrow	00001000		0
<i>H</i> O	00000100	\rightarrow .	22	.99	.99	\rightarrow	00000100		0 1
6	00000010	\rightarrow .	80	.01	.98	\rightarrow	00000010		1
	00000001	\rightarrow .	60	.94	.01	\rightarrow	00000001		

WEKA Machine Learning

http://www.cs.waikato.ac.nz/ml/weka/