
Learning
We have seen machine learning with different representations:
(1)  Decision trees -- symbolic representation of various decision

rules -- “disjunction of conjunctions”
(2)  Perceptron -- learning of weights that represent alinear decision

surface classifying a set of objects into two groups

Different representations give rise to different hypothesis or model spaces.

Machine learning algorithms search these model spaces for the best fitting
model.

Perceptron Learning
Revisited

R Demo

Constructs a line (hyperplane) as a classifier.

What About Non-Linearity?

x1

x2

= +1

= -1

Decision
Surface

Can we learn this decision surface? …Yes! Multi-Layer Perceptronsl.

Multi-Layer Perceptrons

…

x0

x1

x2

Xn-1

xn

y

Input
Layer

Hidden
Layer

Output
Layer

Combination
Function

Transfer
Function

≡ ≡
Linear
Unit

How do we train?

Perceptron was easy:

error

Every time we found an error of the predicted value f(xi) compared
to the label in the training set yi, we update w and b.

Artificial Neural Networks
Feed-forward with Backpropagation

Signal Feed-forward

 Error Backpropagation

…

x0

x1

x2

Xn-1

xn

y

Input
Layer

Hidden
Layer

Output
Layer We have to be a

bit smarter in the
case of ANNs:
compute the error
(feed forward) and
then use the error
to update all the weights
by propagating the error
back.

Backpropagation Algorithm
Initialize the weights in the network (often randomly)
 Do
 For each example e in the training set
 // forward pass
 y = compute neural net output
 t = label for e from training data
 Calculate error Δ = (t - y)2 at the output units
 // backward pass
 Compute error δo for weights from a hidden node h to the output node o using Δ
 Compute error δh for weights from an input node i to hidden node h using δo
 Update the weights in the network
 Until all examples classified correctly or stopping criterion satisfied
 Return the network

Source: http://en.wikipedia.org/wiki/Backpropagation

Note: this algorithm is for
a NN with a single output
node o and a single hidden
layer. It can easily
be generalized.

Backpropagation

€

δo = y(1− y)Δ

€

δh = y(1− y)whoδo

€

who ← who +αoδo

€

wih ← wih +αhδh

This only works because

€

δo = y(1− y)Δ =
∂Δ

∂w • x
=
∂(t − y)2

∂w • x
and the output y is differentiable because the transfer function is differentiable. Also note,
everything is based on the rate of change of the error…we are searching in the direction where
the rate of change will minimize the output error.

…

x0

x1

x2

Xn-1

xn

y

Input
Layer

Hidden
Layer

Output
Layer

who δo

δh wih i
h

o

Δ = (t - y)2

!  Define the network error as

for some x∈X, where i is an
index over the output units.

!  Let ∆x(w) be the error Ex as a
function of the weights w.

!  Use the gradient (slope) of the
error surface to guide the
search towards appropriate
weights:

Neural Network Learning

k
x

k w
∆ w
∂
∂

- = Δ η

E x
(w

)
w0

w1

€

Δ x = (t − y)2

Representational Power
!  Every bounded continuous function can be approximated

with arbitrarily small error by a network with one hidden
layer.

!  Any function can be approximated to arbitrary accuracy by
a network with two hidden layers.

Hidden Layer
Representations

Target Function:

Can this be learned?

Hidden Layer
Representations

1 0 0
0 0 1
0 1 0
1 1 1
0 0 0
0 1 1
1 0 1
1 1 0

Hidden layers allow a network to invent appropriate internal representations.

WEKA Machine Learning

http://www.cs.waikato.ac.nz/ml/weka/

