
Learning 
We have seen machine learning with different representations: 
(1)  Decision trees -- symbolic representation of various decision  

rules -- “disjunction of conjunctions” 
(2)  Perceptron -- learning of weights that represent alinear decision  

surface classifying a set of objects into two groups 

Different representations give rise to different hypothesis or model spaces. 

Machine learning algorithms search these model spaces for the best fitting 
model. 



Perceptron Learning 
Revisited 

R Demo 

Constructs a line (hyperplane) as a classifier. 



What About Non-Linearity? 
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Can we learn this decision surface? …Yes! Multi-Layer Perceptronsl. 



Multi-Layer Perceptrons 
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How do we train? 

Perceptron was easy: 

error 

Every time we found an error of the predicted value f(xi) compared 
to the label in the training set yi, we update w and b. 



Artificial Neural Networks 
Feed-forward with Backpropagation 

Signal Feed-forward 

 Error Backpropagation 
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bit smarter in the 
case of ANNs:  
compute the error 
(feed forward) and 
then use the error 
to update all the weights 
by propagating the error 
back. 



Backpropagation Algorithm 
Initialize the weights in the network (often randomly) 
  Do 
         For each example e in the training set 
              // forward pass 
              y = compute neural net output 
              t = label for e from training data 
              Calculate error Δ = (t - y)2 at the output units 
               // backward pass 
              Compute error δo for weights from a hidden node h to the output node o using Δ  
              Compute error δh for weights from an input node i to hidden node h using δo 
              Update the weights in the network 
  Until all examples classified correctly or stopping criterion satisfied 
  Return the network 

Source: http://en.wikipedia.org/wiki/Backpropagation 

Note: this algorithm is for  
a NN with a single output  
node o and a single hidden 
layer. It can easily  
be generalized. 



Backpropagation 
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δo = y(1− y)Δ

€ 

δh = y(1− y)whoδo

€ 

who ← who +αoδo

€ 

wih ← wih +αhδh

This only works because 

€ 

δo = y(1− y)Δ =
∂Δ

∂w • x
=
∂(t − y)2

∂w • x
and the output y is differentiable because the transfer function is differentiable.  Also note, 
everything is based on the rate of change of the error…we are searching in the direction where 
the rate of change will minimize the output error. 
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!  Define the network error as 
 
 
 
for some x∈X, where i is an 
index over the output units. 

!  Let ∆x(w) be the error Ex as a 
function of the weights w. 

!  Use the gradient (slope) of the 
error surface to guide the 
search towards appropriate 
weights: 

Neural Network Learning 
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Representational Power 
!  Every bounded continuous function can be approximated 

with arbitrarily small error by a network with one hidden 
layer. 

!  Any function can be approximated to arbitrary accuracy by 
a network with two hidden layers. 



Hidden Layer 
Representations 

Target Function: 

Can this be learned? 



Hidden Layer 
Representations 
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Hidden layers allow a network to invent appropriate internal representations. 



WEKA Machine Learning 

http://www.cs.waikato.ac.nz/ml/weka/ 


