
Welcome - CSC 544
Theory of Computation

Dr. Lutz Hamel
hamel@cs.uri.edu
Tyler Hall, Rm 251

– p. 1/1



Optional Reference
Material

Other books you might find useful/interesting to consult:

The Annotated Turing: A Guided Tour Through Alan Turing’s Historic Paper on Computability and
the Turing Machine, Charles Petzold, Wiley, 2008.

Alan Turing: Life and Legacy of a Great Thinker, Christof Teuscher (Editor), Springer, 2006.

The Universal Computer: The Road from Leibniz to Turing, Martin Davis, W. W. Norton &
Company, 2000.

– p. 2/1



The What and the
Why

What: The Theory of Computation is the formal (mathematical) investigation of models of
computation.

Why: We investigate models of computation in order to understand the nature of
computation without having to worry about specific hardware.

However, if the models reflect the major characteristics of the hardware
implementation, then the laws of computation discovered in the models are also
applicable to the actual hardware! Thus, the theoretical results are directly
applicable to software design.

The nature of computing does not only involve limits of computability, but also
problem complexity. We could be faced with a perfectly computable function
(whatever that means at this point) but the time complexity of this function is such
that the computation would never complete in a reasonable amount of time
(whatever that means at this point).

– p. 3/1



Models of
Computation

1. Finite Automata

2. Turing Machines

3. λ-Calculus – invented by Alonzo Church to investigate the nature of computation

4. Recursive Functions – a term coined by Rózsa Péter a Hungarian mathematician
and used by Kurt Gödel in some of his famous proofs

5. String Rewriting Systems – also called semi-Thue systems after Axel Thue a
Norwegian mathematician

It is interesting to note that

1. all models of computation except the first one were invented separately by logicians
in the early 1900’s and have been shown to be equivalent, they each can simulate
the other

2. Turing machines can simulate finite automata in a straightforward manner (but not
vice-versa)

– p. 4/1



Models of
Computation

In this course we will start with a brief overview of results in automata theory and we will
then continue to study the majority of computability and complexity theoretical results in
the context of Turing machines.

We will also show the equivalence between the various models.

– p. 5/1



Course Road Map

– p. 6/1



Limits of Computer Science -
The Halting Problem

Every discipline has its limits. Consider:

Physics - The Perpetual Motion Machine - construct a machine that once set in motion will
produce useful work indefinitely without consuming any energy – Impossible,
violates the second law of thermodynamics – entropy alway increases.

Mathematics - Squaring of the Circle - with just a compass and a straightedge construct a
square with the same area as a given circle – Impossible, given that the area of a
circle is r2π we need to construct a square with sides r

√
π, however, π is a

transcendental number and therefore not constructable.

Computer Science - The Halting Problem - write a program that decides, given any program,
whether that program will halt for all inputs – Impossible, such a general program
cannot be constructed!

– p. 7/1



Fundamental
Concepts

Algorithm - What does it mean to “compute" and exactly “what can be computed"?

Decidability - Which problems can be solved using algorithms and which cannot?

Complexity - How much time and space does a particular problem solution require?

Complexity Theory - Can we organize problems according to the complexities?

– p. 8/1



Mathematical
Discipline

The theory of computation is ultimately a mathematical discipline. We rely on proofs to
investigate truths and consequences of our model choices.

A proof is a logical argument that establishes the truth of a statement beyond any doubt.
Here are common terms associated with proofs:

Statement: a sentence that is either true or false.

Axiom: a statement that is assumed to be universally true.

Assumption: a statement that is assumed to be true for the current proof at hand.

Definition: an unambiguous statement of the precise meaning of a word, symbol, phrase,
or concept.

Theorem: a universal statement whose truth can be established using a chain of logical
reasoning on the basis of certain assumptions that are explicitly given or implicit in
the statement. Such a construction is called a proof of a theorem.

– p. 9/1



Mathematical
Discipline

Lemma: a statement in the context of the current proof whose truth can be established
using a chain of logical reasoning (see theorem). A non-universal/auxiliary theorem
to be used in the proof of another theorem.

Corollary: a theorem that follows logically and easily from another theorem already
proved.

– p. 10/1



The Structure of a
Proof

Lemmas with their proofs.

Statement of the Theorem.

Proof of the theorem:

axioms

assumptions

logical reasoning steps

conclusion

– p. 11/1



Proof Test Drive
Definition: q ∈ A ∩ B iff q ∈ A and q ∈ B.

Definition: q ∈ A ∪ B iff q ∈ A or q ∈ B.

Theorem: Given two sets A and B, then A ∪ B = A ∩ B.

Proof: In order to show that the equivalence A ∪ B = A ∩ B holds, we need to show that
A ∪ B ⊆ A ∩ B and A ∩ B ⊆ A ∪ B holds.

(1) A ∪ B ⊆ A ∩ B. Let some x ∈ A ∪ B, this implies that x �∈ A ∪ B. Therefore, x �∈ A

and x �∈ B. From this it follows that x ∈ A and x ∈ B. Given the definition of intersection
of sets, it follows that x ∈ A ∩ B.

(2) A ∩ B ⊆ A ∪ B. Let some x ∈ A ∩ B, this implies x ∈ A and x ∈ B or x �∈ A and
x �∈ B. It follows that x �∈ A ∪ B or expressed as the complement x ∈ A ∪ B.

This concludes the proof. �.

– p. 12/1



Types of Proofs
Proof by Construction: Many theorems posit that certain objects exist. One way to prove

the existence of these objects is to construct them.

Direct Proof: A straight forward application of the modus ponens,
Given, A implies B.
Assume A.
Show that B holds.

Proof by Contradiction: (also called indirect proof),
Assume A.
Assume ¬B.
Show that ¬B implies ¬A (contradiction!)
Therefore, B has to hold.

Proof by Induction: Example, assuming a well-founded relation on some domain, such as
the successor relation +1 on the positive integers I, and given some predicate P ,
then we can show that ∀i ∈ I.P (i) iff P (1) and P (n + 1) assuming that P (n) holds.

– p. 13/1


