Regular Languages

Definition: A language is called a regular language if some finite automaton recognizes it

Regular Operations

Definition: Let A and B be regular languages, we define the following operations:

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}.$

Star (Kleene Closure): $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in A\}.$

$A \cup B$ is a Regular Language

Theorem: If A_1 and A_2 are regular languages, then so is $A \cup B$.^{*a*}

^aWe postpone the proofs of the other regular operations until we discussed nondeterminism.

$A \cup B$ is a Regular Language

PROOF

Let M_1 recognize A_1 , where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, and M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct *M* to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

- **1.** $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$
- This set is the *Cartesian product* of sets Q_1 and Q_2 and is written $Q_1 \times Q_2$. It is the set of all pairs of states, the first from Q_1 and the second from Q_2 .
- Σ, the alphabet, is the same as in M₁ and M₂. In this theorem and in all subsequent similar theorems, we assume for simplicity that both M₁ and M₂ have the same input alphabet Σ. The theorem remains true if they have different alphabets, Σ₁ and Σ₂. We would then modify the proof to let Σ = Σ₁ ∪ Σ₂.
- **3.** δ , the transition function, is defined as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$

Hence δ gets a state of M (which actually is a pair of states from M_1 and M_2), together with an input symbol, and returns M's next state.

- **4.** q_0 is the pair (q_1, q_2) .
- 5. F is the set of pairs in which either member is an accept state of M_1 or M_2 . We can write it as

$$F = \{ (r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2 \}.$$

This expression is the same as $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$. (Note that it is *not* the same as $F = F_1 \times F_2$. What would that give us instead?³)

Nondeterminism

Up to now we have only considered machines where, given a state and given an input symbol, the next state is uniquely defined - *deterministic machines (DFA)*

However, we could conceive of machines that, given a state and a particular input symbol, have a choice of states to move to - *nondeterministic machines (NFA)*

We will see that nondeterminism does not add to the power of the NFA to recognize larger sets of languages, but nondeterminism adds to the expressiveness of the machines, i.e., it is much easier to build a nondeterministic machine for a particular regular language than a deterministic machine.

NFA

Example: Let *A* be the language consisting of all strings over $\Sigma = \{0, 1\}$ containing a 1 in the third position from the end (e.g. $00100, 0101, 1100 \in A$).

DFA:

NFA:

Computing with NFAs

Computing with NFAs

Example: Consider the computation of the following NFA,

with input string s = 010110,

Formal Def. of NFA

Definition: a nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta: Q \times \Sigma_{\epsilon} \to P(Q)$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

$\mathbf{DFA} \equiv \mathbf{NFA}$

We say that two machines are *equivalent* if they recognize the same language.

Theorem: Every NFA has an equivalent DFA.

Proof Sketch: For every NFA we can construct a DFA that simulates it. We do so by introducing new states that remove multiple transitions on the same input symbol as well as transitions on the empty symbol ϵ .^{*a*}

^aFor a formal proof see pp. 55 (1st & 2nd eds.)

$\mathbf{DFA} \equiv \mathbf{NFA}$

Example: Consider the NFA,

and its equivalent DFA,

Consider input strings *bba*, *baa*, and *a*.

Regular Languages & NFAs

Theorem: A language is regular if and only if some NFA recognizes it

Proof Sketch:

- If a language is regular then some NFA recognizes it. By definition, if a DFA recognizes a language, then it is regular. It follows that there will be some NFAs that are equivalent to the recognizing DFA. Therefore, if a language is regular, then there will be some NFA that recognizes it.
- If some NFA recognizes a language then the language is regular. Any NFA can be converted into an equivalent DFA. By definition this DFA recognizes the same language as the NFA. The language a DFA recognizes is regular. This implies that if an NFA recognizes a language, then the language is regular.

More on NFAs

NFAs facilitate proofs by allowing an easier construction of machines that recognize regular languages.

Let's revisit our regular operations.

Union - NFA

Theorem: The class of regular languages is closed under the union operation.

Proof Sketch: Let N_1 and N_2 be the NFAs that recognize the languages A_1 and A_2 , respectively, we can then construct an NFA N that recognizes the language $A_1 \cup A_2$ as follows:^{*a*}

^aFormal proofs of this and the following theorems appear in the text pp59ff 1st & 2nd eds.

Concatenation - NFA

Theorem: The class of regular languages is closed under the concatenation operation.

Proof Sketch: Let N_1 and N_2 be the NFAs that recognize the languages A_1 and A_2 , respectively, we can then construct an NFA N that recognizes the language $A_1 \circ A_2$ as follows:

Star - NFA

Theorem: The class of regular languages is closed under the kleene closure operation.

Proof Sketch: Let N_1 be the NFA that recognizes the language A_1 , we can then construct an NFA N that recognizes the language A_1^* as follows:

에는 것은 것은 것이 같아요. 것은 것은 것은 것이 있는 것이 있는 것은 것이 가지 않는 것이 있는 것은 것이 같이 있다. 같이 있는 것이 같이 있다. 것은 것은 것은 것은 것은 것이 같이 있다.

Nonregular Languages

Are there languages that FAs cannot recognize? Yes!

The prototypical language in this class of nonregular languages is the language

 $\{0^n 1^n \mid 0, 1 \in \Sigma \text{ and } n \ge 0\}.$

The problem with this language is that the FA has to keep track of i 0's and make sure that for every string in the language there are corresponding number of i 1's.

For the general case FAs cannot perform this task.

Can we prove this? Yes, the *pumping lemma*.

The Pumping Lemma

The pumping lemma is based on the fact that if we pick a string with more symbols in it than there are states then there has to be a loop in the sequence of states. Given this loop we can then walk around this loop as many times as we please and for regular languages the strings generated are members of the original language of the machine. It is interesting to observe that for nonregular languages this pumping does not work! This gives us a way to prove that a language is not regular using contradiction.

The Pumping Lemma

Thereom (The Pumping Lemma): If A is a regular language, then there is a number p (the *pumping length*) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, such that

- 1. for each $i \ge 0, xy^i z \in A$,
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

PL - Example

EXAMPLE 1.73

Let B be the language $\{0^n 1^n | n \ge 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Assume to the contrary that B is regular. Let p be the pumping length given by the pumping lemma. Choose s to be the string $0^p 1^p$. Because s is a member of B and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, where for any $i \ge 0$ the string $xy^i z$ is in B. We consider three cases to show that this result is impossible.

- 1. The string y consists only of 0s. In this case the string xyyz has more 0s than 1s and so is not a member of B, violating condition 1 of the pumping lemma. This case is a contradiction.
- 2. The string y consists only of 1s. This case also gives a contradiction.
- 3. The string y consists of both 0s and 1s. In this case the string xyyz may have the same number of 0s and 1s, but they will be out of order with some 1s before 0s. Hence it is not a member of B, which is a contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is regular, so B is not regular. Note that we can simplify this argument by applying condition 3 of the pumping lemma to eliminate cases 2 and 3.

In this example, finding the string s was easy, because any string in B of length p or more would work. In the next two examples some choices for s do not work, so additional care is required.

Proof Tools

The material we have developed up to this point gives us the following tools to prove properties of languages:

- In order to prove that a language is regular we construct a FA (either DFA or NFA since they are equivalent) that recognizes the language.
- In order to prove that a language is nonregular, we assume that it is regular and then show that this assumption leads to a contradiction in the pumping lemma.