
Regular Languages

Definition: A language is called a regular language if some finite automaton recognizes it

– p. 1/2

Regular Operations

Definition: Let A and B be regular languages, we define the following operations:

Union: A ∪ B = {x | x ∈ A or x ∈ B}.

Concatenation: A ◦ B = {xy | x ∈ A and y ∈ B}.

Star (Kleene Closure): A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

– p. 2/2

A ∪ B is a Regular
Language

Theorem: If A1 and A2 are regular languages, then so is A ∪ B.a

aWe postpone the proofs of the other regular operations until we discussed nondeterminism.

– p. 3/2

A ∪ B is a Regular
Language

– p. 4/2

Nondeterminism
Up to now we have only considered machines where, given a state and given an input
symbol, the next state is uniquely defined - deterministic machines (DFA)

However, we could conceive of machines that, given a state and a particular input
symbol, have a choice of states to move to - nondeterministic machines (NFA)

We will see that nondeterminism does not add to the power of the NFA to recognize
larger sets of languages, but nondeterminism adds to the expressiveness of the
machines, i.e., it is much easier to build a nondeterministic machine for a particular
regular language than a deterministic machine.

– p. 5/2

NFA
Example: Let A be the language consisting of all strings over Σ = {0, 1} containing a 1 in
the third position from the end (e.g. 00100, 0101, 1100 ∈ A).

DFA:

NFA:

– p. 6/2

Computing with
NFAs

– p. 7/2

Computing with
NFAs

Example: Consider the computation of the following NFA,

with input string s = 010110,

– p. 8/2

Formal Def. of NFA
Definition: a nondeterministic finite automaton is a 5-tuple (Q, Σ, δ, q0, F), where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q × Σε → P (Q) is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

– p. 9/2

DFA ≡ NFA
We say that two machines are equivalent if they recognize the same language.

Theorem: Every NFA has an equivalent DFA.

Proof Sketch: For every NFA we can construct a DFA that simulates it. We do so by
introducing new states that remove multiple transitions on the same input symbol as well
as transitions on the empty symbol ε.a

aFor a formal proof see pp. 55 (1st & 2nd eds.)

– p. 10/2

DFA ≡ NFA
Example: Consider the NFA,

and its equivalent DFA,

Consider input strings bba, baa, and a.

– p. 11/2

Regular Languages &
NFAs

Theorem: A language is regular if and only if some NFA recognizes it

Proof Sketch:

If a language is regular then some NFA recognizes it. By definition, if a DFA recognizes a
language, then it is regular. It follows that there will be some NFAs that are
equivalent to the recognizing DFA. Therefore, if a language is regular, then there will
be some NFA that recognizes it.

If some NFA recognizes a language then the language is regular. Any NFA can be converted
into an equivalent DFA. By definition this DFA recognizes the same language as the
NFA. The language a DFA recognizes is regular. This implies that if an NFA
recognizes a language, then the language is regular.

– p. 12/2

More on NFAs
NFAs facilitate proofs by allowing an easier construction of machines that recognize
regular languages.

Let’s revisit our regular operations.

– p. 13/2

Union - NFA
Theorem: The class of regular languages is closed under the union operation.

Proof Sketch: Let N1 and N2 be the NFAs that recognize the languages A1 and A2,
respectively, we can then construct an NFA N that recognizes the language A1 ∪ A2 as
follows:a

aFormal proofs of this and the following theorems appear in the text pp59ff 1st & 2nd eds.
– p. 14/2

Concatenation - NFA
Theorem: The class of regular languages is closed under the concatenation operation.

Proof Sketch: Let N1 and N2 be the NFAs that recognize the languages A1 and A2,
respectively, we can then construct an NFA N that recognizes the language A1 ◦ A2 as
follows:

– p. 15/2

Star - NFA
Theorem: The class of regular languages is closed under the kleene closure operation.

Proof Sketch: Let N1 be the NFA that recognizes the language A1, we can then construct
an NFA N that recognizes the language A∗

1 as follows:

– p. 16/2

Nonregular
Languages

Are there languages that FAs cannot recognize? Yes!

The prototypical language in this class of nonregular languages is the language

{0n1n | 0, 1 ∈ Σ and n ≥ 0}.

The problem with this language is that the FA has to keep track of i 0’s and make sure
that for every string in the language there are corresponding number of i 1’s.

For the general case FAs cannot perform this task.

Can we prove this? Yes, the pumping lemma.

– p. 17/2

The Pumping Lemma

The pumping lemma is based on the fact that if we pick a string with more symbols in it
than there are states then there has to be a loop in the sequence of states. Given this
loop we can then walk around this loop as many times as we please and for regular
languages the strings generated are members of the original language of the machine. It
is interesting to observe that for nonregular languages this pumping does not work! This
gives us a way to prove that a language is not regular using contradiction.

– p. 18/2

The Pumping Lemma

Thereom (The Pumping Lemma): If A is a regular language, then there is a number p (the
pumping length) where, if s is any string in A of length at least p, then s may be divided
into three pieces, s = xyz, such that

1. for each i ≥ 0, xyiz ∈ A,

2. | y |> 0, and

3. | xy |≤ p.

– p. 19/2

PL - Example

– p. 20/2

Proof Tools
The material we have developed up to this point gives us the following tools to prove
properties of languages:

In order to prove that a language is regular we construct a FA (either DFA or NFA
since they are equivalent) that recognizes the language.

In order to prove that a language is nonregular, we assume that it is regular and then
show that this assumption leads to a contradiction in the pumping lemma.

– p. 21/2

