Regular Languages

Definition: A language is called a regular language if some finite automaton recognizes it

- p. 1/

Regular Operations

Definition: Let A and B be regular languages, we define the following operations:
Union: AUB ={x |z € Aorz € B}.
Concatenation: Ao B ={xy |z € Aandy € B}.

Star (Kleene Closure): A* = {x1x2...2 | kK > 0andeach z; € A}.

—p. 212

AU B Is a Regular
Language

Theorem: If A; and Ay are regular languages, then sois AU B.2

a\We postpone the proofs of the other regular operations until we discussed nondeterminism.

-p. 3

AU B Is a Regular
] Language

PROOF

Let M recognize Ay, where M; = (Q1,X%, 61, q1, F1), and
M recognize As, where My = (Q2, X, §2, g2, F2).

Construct M to recognize A1 U A, where M = (Q, %, 6, go, F).

L. Q={(r1,r2)| 1 € Q1 and ry € Q2}.
‘This set is the Cartesian product of sets (1 and Q5 and is written Q1 X Q2.
Tt is the set of all pairs of states, the first from); and the second from @Qs.

2. %, the alphabet, is the same as in A/; and M. In this theorem and in all
subsequent similar theorems, we assume for simplicity that both M; and
M5 have the same input alphabet . The theorem remains true if they

| have different alphabets, 3 and ¥3. We would then modify the proof to

let ¥ = ¥ U Xs.

3. 4, the transition function, is defined as follows. For each (r1,72) € Q and
eacha € X, let

5((r1,r2),a) = (51(r1,a),5g(r2,a)).

Hence § gets a state of M (which actually is a pair of states from M; and
M), together with an input symbol, and returns M’s next state.

4. qp is the pair (g1, g2)-

5. Fis the set of pairs in which either member is an accept state of M7 or Ms.
We can write it as

I'= {(Tl,’)"g)| ri€lyorrg € FQ}.

"This expression is the same as F' = (F} x (J2) U (Q1 x F3). (Note thatit is
not the same as F' = F; x F,. What would that give us instead?3)

Nondeterminism

Up to now we have only considered machines where, given a state and given an input
symbol, the next state is uniquely defined - deterministic machines (DFA)

However, we could conceive of machines that, given a state and a particular input
symbol, have a choice of states to move to - nondeterministic machines (NFA)

We will see that nondeterminism does not add to the power of the NFA to recognize
larger sets of languages, but nondeterminism adds to the expressiveness of the
machines, i.e., it is much easier to build a nondeterministic machine for a particular
regular language than a deterministic machine.

—p. 5/

Example: Let A be the language consisting of all strings over 3 = {0, 1} containing a 1 in
the third position from the end (e.g. 00100, 0101, 1100 € A).

DFA:

NFA:

—p. 6/2

Computing with
NFAS

Deterministic Nondeterministic
computation computation

e STart (.
A5

-

reject

3
!

* accept or reject * accept

e e A k.
" E L ® L] @

)
(.

Computing with
NFAS

Example: Consider the computation of the following NFA,

with input string s = 010110,

Symbol read

—p. 8/

Formal Def. of NFA

Definition: @ nondeterministic finite automaton is a 5-tuple (Q, X, 6, qo, F'), where
1. @ is a finite set called the states,
2. X is a finite set called the alphabet,
3. 0: Q x X — P(Q) is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

—p. 9/

DFA = NFA

We say that two machines are equivalent if they recognize the same language.

Theorem: Every NFA has an equivalent DFA.

Proof Sketch: For every NFA we can construct a DFA that simulates it. We do so by
introducing new states that remove multiple transitions on the same input symbol as well
as transitions on the empty symbol ¢.2

2For a formal proof see pp. 55 (1st & 2nd eds.)

—p. 1072

DFA = NFA

Example: Consider the NFA,

and its equivalent DFA,

Consider input strings bba, baa, and a.

—p. 11/

Regular Languages &
‘ NFAS

Theorem: A language is regular if and only if some NFA recognizes it

Proof Sketch:

If alanguage is regular then some NFA recognizes it. By definition, if a DFA recognizes a
i language, then it is regular. It follows that there will be some NFAs that are
equivalent to the recognizing DFA. Therefore, if a language is regular, then there will
be some NFA that recognizes it.

If some NFA recognizes a language then the language is regular. Any NFA can be converted
into an equivalent DFA. By definition this DFA recognizes the same language as the
NFA. The language a DFA recognizes is regular. This implies that if an NFA
recognizes a language, then the language is regular.

—p. 12

More on NFAS

NFAs facilitate proofs by allowing an easier construction of machines that recognize
regular languages.

Let’s revisit our regular operations.

—p. 13/

\ Union - NFA

Theorem: The class of regular languages is closed under the union operation.

Proof Sketch: Let N1 and N5 be the NFAs that recognize the languages A1 and Ao,

respectively, we can then construct an NFA N that recognizes the language A U A5 as
follows:?

— p. 14/
aFormal proofs of this and the following theorems appear in the text pp59ff 1st & 2nd eds.

Concatenation - NFA

Theorem: The class of regular languages is closed under the concatenation operation.

Proof Sketch: Let N1 and N5 be the NFAs that recognize the languages A1 and Ao,

respectively, we can then construct an NFA N that recognizes the language A, o As as
follows:

N1 N2

—p. 15/

Star - NFA

Theorem: The class of regular languages is closed under the kleene closure operation.

Proof Sketch: Let N1 be the NFA that recognizes the language A1, we can then construct
an NFA N that recognizes the language A7 as follows:

—p. 16/

Nonregular
Languages

Are there languages that FAs cannot recognize? Yes!

The prototypical language in this class of nonregular languages is the language
{0"1™ | 0,1 € Y andn > 0}.

The problem with this language is that the FA has to keep track of ¢ 0's and make sure
that for every string in the language there are corresponding number of i 1's.
For the general case FAs cannot perform this task.

Can we prove this? Yes, the pumping lemma.

—p. 17

‘ The Pumping Lemma

The pumping lemma is based on the fact that if we pick a string with more symbols in it
than there are states then there has to be a loop in the sequence of states. Given this
loop we can then walk around this loop as many times as we please and for regular
languages the strings generated are members of the original language of the machine. It
IS interesting to observe that for nonregular languages this pumping does not work! This
gives us a way to prove that a language is not regular using contradiction.

—p. 18/-

The Pumping Lemma

Thereom (The Pumping Lemma): If A is a regular language, then there is a number p (the
pumping length) where, if s is any string in A of length at least p, then s may be divided
into three pieces, s = xyz, such that

1. foreachi > 0,zy’z € A,
2. |y |>0,and

3. |zy < p.

—p. 1972

PL - Example

EXAMPLE 1 .73 ..

Let B be the language {0717 n > 0}. We use the pumping lemma to prove that
B is not regular. The proof is by contradiction.

Assume to the contrary that B is regular. Let p be the pumping length given
by the pumping lemma. Choose s to be the string 0P17. Because s is a member
of B and s has length more than p, the pumping lemma guarantees that s can be
split into three pieces, s = zyz, where for any i > 0 the string ry'zisin B. We
consider three cases to show that this result is impossible.

1. The string y consists only of 0s. In this case the string zyy2 has more 0s
than 1s and so is not a member of B, violating condition 1 of the pumping
lemma. This case is a contradiction.

2. The string y consists only of 1s. This case also gives a contradiction.

3. The string y consists of both 0s and 1s. In this case the string zyyz may
have the same number of Os and 1s, but they will be out of order with some
1s before 0s. Hence it is not a member of B, which is a contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is reg-
ular, so B is not regular. Note that we can simplify this argument by applying
condition 3 of the pumping lemma to eliminate cases 2 and 3.

In this example, finding the string s was easy, because any string in B of
length p or more would work. In the next two examples some choices for s do
not work, so additional care is required. &

—p. 20/2

Proof Tools

The material we have developed up to this point gives us the following tools to prove
properties of languages:

M In order to prove that a language is regular we construct a FA (either DFA or NFA
since they are equivalent) that recognizes the language.

M In order to prove that a language is nonregular, we assume that it is regular and then
show that this assumption leads to a contradiction in the pumping lemma.

—p. 21/

