
Generators vs.
Recognizers

Up to now we have only described languages in terms of machines that recognize a
particular language.

But we could also imagine describing a language by a system that is able to generate all
the strings in a language.

– p. 1/3



Rewriting Systems

In order to define a system that generates a language we introduce a new model of
computation: Rewriting Systems.

Informally, a rewriting system consists of an alphabet and a set of rules over that
alphabet.

You are already familiar with a very powerful rewriting system: Algebra!

Here, the alphabet are the numerals and variable names in addition to operator names.
The rules consist of your standard algebraic laws.

– p. 2/3



Rewriting Systems

Example: Consider the set of algebraic laws:

x + x = 2 × x (1)

y + 0 = y (2)

x + y = y + x (3)

We can apply these rules to strings formed from the alphabet. Consider:

5 + 3 + 5 + 0 = 5 + 3 + 5 (rule 2)

= 5 + 5 + 3 (rule 3)

= 2 × 5 + 3 (rule 1)

The string that we start with is called the input string and the string that we end up with is
called the normal form because no other rules apply to this final string.

For our purposes we introduce a special rewriting system called a String Rewriting System.

– p. 3/3



String Rewriting
Systems

Definition: [String Rewriting System (SRS)] A string rewriting system is a tuple (Σ, R)

where,

Σ is a finite alphabet where Σ∗ is the set of (possibly empty) strings over Σ.a

R is a binary relation on Σ∗, i.e., R ⊆ Σ∗ × Σ∗. Each element (u, v) ∈ R is called a
rewriting rule and is usually written as u → v.

An inference step in this formal system is: given a string u and a rule u → v with
u, v ∈ Σ∗ and u → v ∈ R then the string u can be rewritten as the string v.

aThe set Σ∗ is a convenient short hand to describe all the strings over the alphabet Σ.

– p. 4/3



String Rewriting
Systems

In order for an SRS (Σ, R) to be useful we allow rules to be applied to substrings of given strings; let
s = xuy,t = xvy, and u → v ∈ R with x, y, u, v ∈ Σ∗, then we say that s rewrites to t and we
write,

s ⇒ t.

More formally,

Definition: [one-step rewriting relation] Let (Σ, R) be a string rewriting system, then the one-step
rewriting relation RW is defined as the set Σ∗ × Σ∗ with s ⇒ t ∈ RW for strings s, t ∈ Σ∗ if and
only if there exist x, y, u, v ∈ Σ∗ such that s = xuy, t = xvy, and u → v ∈ R.

In plain English: any two string s, t belong to the relation RW if and only if they can be related by a
rewrite rule in the rule set R.

Exercise: R ⊆ RW . Why? (spoiler alert, next page holds the solution)

– p. 5/3



String Rewriting
Systems

Proposition: R ⊆ RW .

Proof: We use the definition of a subset, R ⊆ RW iff ∀e ∈ R. e ∈ RW , for our proof.
There is nothing to prove for the ‘only if’ direction. More interesting is the ‘if’ direction, if
we can show that all elements of R are also elements of RW then it follows from the
definition that R ⊆ RW .

An element of R is the pair (u, v) with u, v ∈ Σ∗ if the rewriting system contains the rule
u → v. An element of RW is the pair (xuy, xvy) with u, v, x, y ∈ Σ∗ if the rewriting
system contains the rule u → v. Thus, RW contains pairs of strings where the first
string contains a substring that is the left side of a rule in the rewriting system. Observe
that (u, v) ∈ RW with x and y the empty strings. It follows that all elements of R are
members of RW .�

– p. 6/3



String Rewriting
Systems

Given a string rewriting system (Σ, R), we can obviously apply the rewriting rules to the results of a
rewriting step. This gives rise to derivations

sn ⇒ sn−1 ⇒ . . . ⇒ s1 ⇒ s0,

with sk ∈ Σ∗.

We say that s0 is a normal form if s0 cannot be rewritten any further.

The transitive closure ⇒∗ of the one-step rewriting relation is the set all pairs of strings that are
related to each other via zero or more rewriting steps, e.g.,

sn ⇒∗ s0,

and

si ⇒∗ si.

– p. 7/3



String Rewriting
Systems

Example: The urn game. An urn contains black and white beads. The game has the following rules:

if you remove two black beads you have to replace them with a black bead.

if you remove two white beads you have to replace them with a black bead.

if you remove a white and a black bead you have to replace them with a white bead.

Given the contents of an urn, what is the outcome of the game?

The game can be set up as a string rewriting system (Σ, R). Let Σ = {black, white} and let R be
the following set of rules,

black black → black

white white → black

black white → white

white black → white

black white black white ⇒ black white white ⇒ white white ⇒ black

black black white white ⇒ black white white ⇒ white white ⇒ black

black black white ⇒ black white ⇒ white

black white black ⇒ black white ⇒ white

– p. 8/3



String Rewriting
Systems

Observations:

It can be shown that for each urn there exists a unique normal form, the order of rule application
does not matter.

If we interpret a rewrite rule u → v as specifying that u is the same as v then we can interpret
the normal form as a ’value’ for an urn. Consider,

black white black ⇒ black white ⇒ white,

the normal form ’white’ can be considered the value for the urn.

We say that two urns are equivalent if they have the same normal form,

black white black

∗

������������

���������� ≡ black black white

∗

�� ����������

����������

white

– p. 9/3



String Rewriting
Systems

Example: Palindrome generator. We construct a string rewriting system (Σ, R) with
Σ = {a, b, . . . , z, α} and R the set of rules,

α → aαa

α → bαb

...

α → zαz

aαa → a

bαb → b

...

zαz → z

α → ε

α ⇒ rαr ⇒ raαar ⇒ radαdar ⇒ radar

Exercise: Derive the normal form: racecar

Exercise: Derive the normal form: redder

– p. 10/3



Grammars
Observations:

We have seen in the case of the palindrome generator that SRSs are well suited for generating
strings with structure.

By modifying the standard SRS just slightly we obtain a convenient framework for generating
strings with desirable structure – Grammars

Definition: [Grammar] A grammar is a 4-tuple (V, Σ, R, s) such that,

V is a set of variables called the non-terminals,

Σ with V ∩ Σ = ∅, is a set of symbols called the terminals,a

R is a set of rules of the form u → v with u, v ∈ (V ∪ Σ)∗,b

s is called the start symbol and s ∈ V .

aThe fact that V and Σ are non-overlapping means that there will never be confusion between terminals and non-terminals.
bAll sets in this definition are considered to be finite.

– p. 11/3



Grammars
Example: Grammar for arithmetic expressions. We define the grammar (V, Σ, R, s) as follows:

V = {E},

Σ = {a, b, c, +, ∗, (, )},

R is the set of rules,
E → E + E

E → E ∗ E

E → (E)

E → a

E → b

E → c

s = E (clearly this satisfies s ∈ V ).

With grammars,derivations always start with the start symbol. Consider,

E ⇒ E ∗ E ⇒ (E) ∗ E ⇒ (E + E) ∗ E ⇒ (a + E) ∗ E ⇒ (a + b) ∗ E ⇒ (a + b) ∗ c.

Here, (a + b) ∗ c is a normal form often also called a terminal or derived string.

– p. 12/3



Grammars
Exercise: Identify the rule that was applied at each rewrite step in the above derivation.

Exercise: Derive the string ((a)).

Exercise: Derive the string a + b ∗ c.

– p. 13/3



Grammars
Example: Grammar for strings of a’s and b’s with at least one b in them. We define the grammar
(V, Σ, R, s) as follows:

V = {S, A, B},

Σ = {a, b},

R is the set of rules,
S → A b B

A → ε

A → a A

A → b A

B → ε

B → a B

B → b B

s = S.

Exercise: Derive string aba.

Exercise: Derive string bbb.

Exercise: Derive string b.

– p. 14/3



Grammars
We are now in the position to define exactly what we mean by the language of a grammar.

Definition:[Language of a Grammar] Let G = (V, Σ, R, s) be a grammar, then we define the language
of grammar G as the set of all terminal strings that can be derived from the start symbol s by
rewriting using the rules in R. Formally,

L(G) = {q | s ⇒∗ q ∧ q ∈ Σ∗}.

Example: Let J = (V, Σ, R, s) be the grammar of Java, then L(J) is the set of all possible Java
programs.

– p. 15/3



Grammars
Observations:

With the concept of a language we can now ask interesting questions. For example, given a
grammar G = (V, Σ, R, s) and some sentence p ∈ Σ∗, does p belong to L(G)?

If we let J be the grammar of Java, then asking whether some string p ∈ Σ∗ is in L(J) is
equivalent to asking whether p is a syntactically correct program.

We can prove language membership by by showing that the sentence p in question can be
derived from the start symbol. Graphically,

s

∗

��
��

��
��

�

��
��

��
� ≡ p

∗

�� ��
��

��
�

��
��

��
�

p

– p. 16/3



Grammars
Observations:

By restricting the shape of the rewrite rules in a grammar we obtain different
language classes.

The most famous set of language classes is the Chomsky Hierarchy.

– p. 17/3



The Chomsky Hierarchy

Let G = (V, Σ, R, s) be a grammar. Restricting the shape of the rules in R gives rise to the following hierarchy.

Rules Grammar Language Machine

α → β Type-0 Recursively Enumerable Turing machine

αAβ → αγβ Type-1 Context-sensitive Linear-bounded Turing machine

A → γ Type-2 Context-free Pushdown automaton

A → a and A → aB Type-3 Regular Finite state automaton

where α, β, γ ∈ (V ∪ Σ)∗, A, B ∈ V, a ∈ Σ. In Type-1 γ is not allowed to be the empty string.

– p. 18/3



Type 3: Regular Grammars

A grammar G = (V, Σ, R, s) is called regular (type 3) if and only if the rules in R are of
the form a

A → a B

or

A → a

with A, B ∈ V and a ∈ Σ.

a If the language include the empty string then the rule s → ε will need to be added to the grammar.

– p. 19/3



Type 3: Regular Grammars

Example: Grammar for strings of one or more 1’s followed by a single 0. We define the
grammar (V, Σ, R, s) as follows:

V = {A, S},

Σ = {0, 1},

R is the set of rules,
S → 1 A

A → 1 A

A → 0

s = S.

– p. 20/3



Type 3: Regular Grammars

Example: Grammar for strings of a’s and b’s with at least one b in them. We define the grammar
(V, Σ, R, s) as follows:

V = {A, B},

Σ = {a, b},

R is the set of rules,
A → a A

A → b A

A → b B

A → b

B → a B

B → b B

B → a

B → b

s = A.

This shows that the language of strings of a’s and b’s with at least one b in them is a regular language.

– p. 21/3



Regular Languages and
Regular Grammars

Lemma: If a language is recognized by a FA then it is generated by a
type-3 grammar.

Proof: We show that if a language is recognized by a DFA then we can construct a type-3
grammar that generates it. Let M = (Q, Σ, δ, q0, F ) be a DFA that recognizes language
L(M). We now construct the type-3 grammar G = (V, Σ, R, s) that simulates the
computations of the DFA :

For each state q ∈ Q we construct the non-terminal symbol 〈q〉 ∈ V ,

The terminal set Σ in the grammar is the same as the alphabet of the machine,

We construct the rule set R as follows, let q, p ∈ Q and let a ∈ Σ,

add a rule of the form 〈q〉 → a 〈p〉 for each transition δ(q, a) = p,

add a rule of the form 〈q〉 → a for each transition δ(q, a) = p where p ∈ F ,

add a rule of the form 〈q0〉 → ε if the initial state is an accepting state, i.e.,
q0 ∈ F .

We let s = 〈q0〉.
– p. 22/3



Regular Languages and
Regular Grammars

Now,for any string w = w1w2 . . . wn ∈ L(M) the machine M will perform the
computation

q0w1w2 . . . wn � w1q1w2 . . . wn � . . . � w1w2 . . . qn−1wn � w1w2 . . . wnqn

with qn ∈ F . We can show by induction on n that the input string is generated by the
grammar with the derivation

〈q0〉 ⇒ w1〈q1〉 ⇒ w1w2〈q2〉 ⇒ . . . ⇒ w1w2 . . . wn−1〈qn−1〉 ⇒ w1w2 . . . wn−1wn

– p. 23/3



Regular Languages and
Regular Grammars

Consider:

1. s = ε – in the machine this gives rise to the computation q0 which is also an accepting state, the grammar
derives the empty string via the rule 〈q0〉 → ε.

2. s = w1 – this gives rise to the computation q0w1 	 w1q1 where q1 is an accepting state; the grammar
derives string w1 via the rule 〈q0〉 → w1.

3. Any substring s = w1w2 . . . wk of string w = w1w2 . . . wn ∈ L(M) with k ≤ n– then the machine
performs the computation

q0w1w2 . . . wn 	 w1q1w2 . . . wn 	 . . . 	 w1w2 . . . qk−1wk 	 w1w2 . . . wkqk

where qk might or might not be an accepting state; as inductive hypothesis we assume that the grammar derives
the string w1w2 . . . wk−1 with the following derivation

〈q0〉 ⇒ w1〈q1〉 ⇒ w1w2〈q2〉 ⇒ . . . ⇒ w1w2 . . . wk−1〈qk−1〉

then it follows from the inductive hypothesis and the fact that by construction there has to exist at least one of the
following rules

〈qk−1〉 → wk

if qk is an accepting state or

〈qk−1〉 → wk〈qk〉
if not, that the grammar can generate the string s = w1w2 . . . wk .

� – p. 24/3



Regular Languages and
Regular Grammars

Lemma: if a language is generated by a type-3 grammar then it is recog-
nized by a FA.

Proof: We show that if a language is generated by a type-3 grammar then it is recognized
by a DFA. Let G = (V, Σ, R, s) be a type-3 grammar, then we construct the machine
M = (Q, Σ, δ, q0, F ) as follows,

For each A ∈ V in grammar G we construct the state qA ∈ Q in machine M ,

The terminal set Σ in G becomes the alphabet Σ for the machine,

Construct the transition function δ as follows,

for each rule of the form A → a B ∈ R we construct the transition δ(qA, a) = qB ,

for each rule of the form A → a ∈ R we construct the transition δ(qA, a) = qF

with qF ∈ F ,

for each rule of the form A → ε ∈ R we add the state qA to the set of accepting
states, F.

the initial state qs = q0.

– p. 25/3



Regular Languages and
Regular Grammars

Now,for any string w = w1w2 . . . wn ∈ L(G), we can show by induction that a derivation
in G,

〈q0〉 ⇒ w1〈q1〉 ⇒ w1w2〈q2〉 ⇒ . . . ⇒ w1w2 . . . wn−1〈qn−1〉 ⇒ w1w2 . . . wn−1wn

has an equivalent computation for the machine M , the machine M will perform the
computation,

q0w1w2 . . . wn � w1q1w2 . . . wn � . . . � w1w2 . . . qn−1wn � w1w2 . . . wnqn

with qn ∈ F . �.

– p. 26/3



Regular Languages and
Regular Grammars

Theorem: A language is recognized by a FA if and only if it is generated
by a type-3 grammar.

Proof: Follows directly from the two previous lemmas.

– p. 27/3



Regular Expressions

As you might have noticed, regular grammars are a little awkward to construct. There is
a another generator for regular languages called regular expressions.

– p. 28/3



Regular Expressions

– p. 29/3



Regular Expressions

– p. 30/3



Regular Languages and
Regular Expressions

Theorem: A language is regular if and only if a regular expression gener-
ates it.

Proof Sketch:a Let L be some language.

If L is regular, then a regular expression generates it. If L is regular then some FA recognizes
it. For every FA we can construct an equivalent regular expression.

If some regular expression generates L, then it is a regular language. For every regular
expression that generates L we can construct an equivalent FA that recognizes L.

aA formal proof of this appears in the book; pp66ff 1st & 2nd eds.

– p. 31/3



Regular Grammars
and Expressions

Corollary: Regular Grammars and Regular Expressions generate the
same class of languages.

Follows immediately from the previous two theorems.

– p. 32/3


