Context-Free
] Languages

As pointed out before, the prototypical context-free language is
L={a"b" |a,be ¥andn > 0}

In order to accept strings in this language a machine has to remember how many a’s it
has seen so that it can match the number b's with the number of a’s.

One way to accomplish this is with a stack, given some input string s € L:
M ensure that only b's follow the last a in s,
M push all the a’s of s onto the stack,
M then pop one a off the stack for each b,

M once we have read all the input symbols of s and the stack is empty and we are in an
accepting state, then accept s; otherwise reject.

—p. 1/

Pushdown
Automaton

i ~

state
-control

stack

‘laabbinput
X
y
Z
T AV

Formal Def. of PDA

Definition: @ pushdown automaton is a 6-tuple (Q, >, 1", 9, qo, F'), where
1. @ is the set of states,
2. X is input alphabet,
3. I''is the stack alphabet,
4. §: Q x Xe xT'e = P(Q x I'¢) is the transition function,
5. qo € Q Is the start state, and

6. F' C (is the set of accept states.

Is this a deterministic or nondeterministic machine?

—p. 3/

Formal Computation
‘ of PDA

A pushdown automaton M = (Q, X, T, 4, qo, F') computes as follows. It ac-
cepts input w if w can be written as w = wiws - - - Wy, where each w; € X, and
sequences of states 79,71, ..., n € @ and strings S, $1,. .., S, € ['* exist that
satisfy the following three conditions. The strings s; represent the sequence of
stack contents that M has on the accepting branch of the computation.

1. 7o = qo and so = e. This condition signifies that M starts out properly, in
the start state and with an empty stack.

2. Fori =0,...,m — 1, we have (r;31,b) € 6(r;, w;11,a), where s; = at
and s;,1 = bt for some a,b € I'. and ¢t € I'*. This condition states that M
moves properly according to the state, stack, and next input symbol.

3. rm, € F. This condition states that an accept state occurs at the input end.

—p. 4l

0"1"™ | n >0}

The following is the formal description of the PDA (page 110) that recognize
the language {0"1"| n > 0}. Let M; be (Q,%,T, 6, q1, F), where

Q@ = {q1, 92, g3, 94},
¥ ={0,1},
I'={0,8},

F ={q1,q4}, and

§ is given by the following table, wherein blank entries signify (.

Input: 0 1 €

Stack: [0 [§ | € 0 [$]e|0] $ | e
q {(g2,8)}
q2 {(QQvo)} {(Q376)}
q3 {(g3,€)} {(qs,2)}
q4

—p. 5/2

Context-Free
Languages

Definition: A language is context-free if some pushdown automaton recog-
nizes it.

—p. 6/2

Context-Free
\ Grammars

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. Y is a finite set, disjoint from V, called the terminals,

3. Ris a finite set of 7ules, with each rule being a variable and a string of vari-
ables and terminals, and

4, S € V is the start variable.

If u, v, and w are strings of variables and terminals, and A — w is a rule of
' . . B * .
the grammar, we say that uAv yields uwv, written uAv = wwv. Write u = v if
u = v or if a sequence u, uo, ..., ux exists for k > 0 and

U= U] > U2 = ... = U = V.

The language of the grammar is {w c XS = w}.

—p. 7/

Context-Free
Grammars

Example: Given the context-free grammar G = (V, %, R, S), with
V ={A},¥ ={a,b},S = A, and R the set of rules,

A — aAb
A — €

then L(G) = {a™b™ | n > 0}.

—p. 8/

\ CFL Theorem

Theorem: A language is context-free iff some context-free grammar (CFG) generates it.

Proof Sketch:? Let L be some language.

If L is context-free, then some CFG generates it. If L is context-free then some PDA
recognizes it. We can show that for every PDA we can build a CFG that generates
the language the PDA recognizes.

If some CFG generates L, then L is context-free. For every CFG that generates L we can
show that we can construct a PDA that recognizes L.

2A related formal proof appears in the book; pp106ff 1st ed., pp115ff 2nd ed.)

—p. 9/

Language Hierarchy

Corollary: Every regular language is also a context-free language.

Proof Sketch: A PDA can simulate an FA by ignoring its stack.

This gives us the following hierarchy of languages

context-free

languages

regular
languages

—p. 1072

Chomsky Normal
Form

The Chomsky normal form of a context free grammar is convenient to work with,
especially later when we want to prove properties of context-free languages.

Definition: A context-free grammar (V, X, R, s) is in Chomsky normal form if every rule in
R is of the form

A — BC

A — a

| witha,B,C € Vanda € .

—p. 11/

Chomsky Normal
Form

Theorem: Any context-free language is generated by a context-free gram-
mar in Chomsky normal form

Proof Sketch: Any context-free grammar can be converted to a grammar in Chomsky
normal form.

—p. 12/

Chomsky Normal
Form

Example: Convert the following CFG to Chomsky Normal Form (CNF):

S — aX|YDb
X — Sle
Y — bY|b
Step 1 - Kill all e productions: By inspection, the only nullable nonterminal is X. Delete all

e productions and add new productions, with all possible combinations of the nullable X
- removed. The new CFG, without e productions, is:

S — aXla|YD
X - S
Y — bY|b

—p. 13/

Chomsky Normal
Form

Step 2 - Kill all unit productions: The only unit production is X — S, where the S can be
replaced with all SOs non-unit productions (i.e. X, a, and Y'b). The new CFG, without
unit productions, is:

S — aXla|YD
X — aXla|YD
Y — bY|b
Step 3 - Replace all mixed strings with solid nonterminals. Create extra productions that

produce one terminal, when doing the replacement. The new CFG, with a RHS
consisting of only solid nonterminals or one terminal is:

S — AX|YBla
X — AX|YBla
Y — BY[b

A — a

B — b

—p. 14

Beyond CFL's

Are there languages beyond context-free languages? Yes, consider
L=A{a"b"c" | a,b,c € ¥ and n > 0}.

Our stack approach does not work anymore because we need to keep track of three
entities.

—p. 15/

CFL Pumping Lemma

Theorem: [Pumping Lemma for Context-free Languages] If A is a context-
free language then there is a number p (the pumping length) where, if s
is any string A of length at least p, then s may be divided into five pieces
s = wvxyz satisfying the conditions

1. for each i > 0, uv'zy'z € A,
2. |vy| >0,
3. |vzy| < p.

—p. 16/

CFL Pumping Lemma

As before we can use the pumping lemma to show that certain languages are not
context-free.

Theorem: The language A = {a"b™c™ | n > 0} is not context free.

Proof: Proof by contradiction using the pumping lemma. If the language is context free
then there should be some string s € A with |s| > p where p is the pumping length. Let
s = aPbPcP be that string. The pumping lemma state that we can split up the string into
s = uvzyz such that uv'zy'z € A for all i > 0. Given conditions 2 and 3 of the pumping
lemma this is clearly not possible. O

—p. 17

CFL Pumping Lemma

Observations: Where does the pumping length come from? We cannot use a pumping
length derived from the PDA because the PDA now contains an infinite structure making
the argument of a forced looping given a string with the length of at least the number
states difficult.

However, we can look at looping during derivations in grammars.

—p. 18/-

CFL Pumping Lemma

Consider the following grammar in Chomsky normal form of the language
L ={a"™ | n > 0},

A — AA

A — a

The longest string we can generate without repeating a rule from the start symbol to a
leaf node is ‘aa’,

| A

A A
a a
That means, the derivation of any string with a length > 2 will force a recursive

application of the first rule — that is, the derivation loops! But this would also mean that
the associated PDA would loop! - p. 191

CFL Pumping Lemma

Also notice that for a grammar in Chomsky normal form the length of a generated string
s is related to the levels t in the derivation tree as

5| < 2°

We can relate this back to the number of non-terminals: Let V' be the set of
non-terminals in the grammar, then |V'| is the maximum number of levels in a parse tree
without repeating a rule in any branch. Or in other words, if

|s| > 2!V

then one of its branches will have a repeated rule.

Check that in the grammar above.

—p. 20/

CFL Pumping Lemma

Example: Consider the grammar in Chomsky normal form for the language

L ={a"b" | n > 0},

A — AP

P — @B

Q — AP
i A — a

B — b

P — b

Observe that V = {A, B, P, Q}, that is, strings with length > 24 will be generated using
repeated rules.

—p. 21/

CFL Pumping Lemma

Proposition: CFGs with recursive rules have a pumping length.

Proof: Follows directly from the fact that any CFG can be written in Chomsky Normal
Form and that derivations in Chomsky Normal Form grammars are binary trees.

—p. 22/

CFL Pumping Lemma

Example: Consider the CFG for the language

L ={a"b" | n > 0},

ASB
€

a

b

L

S > »n »

—p. 23/

