
Context-Free
Languages

As pointed out before, the prototypical context-free language is

L = {anbn | a, b ∈ Σ and n ≥ 0}

In order to accept strings in this language a machine has to remember how many a’s it
has seen so that it can match the number b’s with the number of a’s.

One way to accomplish this is with a stack, given some input string s ∈ L:

ensure that only b’s follow the last a in s,

push all the a’s of s onto the stack,

then pop one a off the stack for each b,

once we have read all the input symbols of s and the stack is empty and we are in an
accepting state, then accept s; otherwise reject.
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Pushdown
Automaton
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Formal Def. of PDA
Definition: a pushdown automaton is a 6-tuple (Q, Σ, Γ, δ, q0, F ), where

1. Q is the set of states,

2. Σ is input alphabet,

3. Γ is the stack alphabet,

4. δ : Q × Σε × Γε → P (Q × Γε) is the transition function,

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of accept states.

Is this a deterministic or nondeterministic machine?
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Formal Computation
of PDA
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{0n1n | n ≥ 0}

– p. 5/2



Context-Free
Languages

Definition: A language is context-free if some pushdown automaton recog-
nizes it.
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Context-Free
Grammars
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Context-Free
Grammars

Example: Given the context-free grammar G = (V, Σ, R, S), with
V = {A}, Σ = {a, b}, S = A, and R the set of rules,

A → aAb

A → ε

then L(G) = {anbn | n ≥ 0}.
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CFL Theorem

Theorem: A language is context-free iff some context-free grammar (CFG) generates it.

Proof Sketch:a Let L be some language.

If L is context-free, then some CFG generates it. If L is context-free then some PDA
recognizes it. We can show that for every PDA we can build a CFG that generates
the language the PDA recognizes.

If some CFG generates L, then L is context-free. For every CFG that generates L we can
show that we can construct a PDA that recognizes L.

aA related formal proof appears in the book; pp106ff 1st ed., pp115ff 2nd ed.)
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Language Hierarchy

Corollary: Every regular language is also a context-free language.

Proof Sketch: A PDA can simulate an FA by ignoring its stack.

This gives us the following hierarchy of languages
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Chomsky Normal
Form

The Chomsky normal form of a context free grammar is convenient to work with,
especially later when we want to prove properties of context-free languages.

Definition: A context-free grammar (V, Σ, R, s) is in Chomsky normal form if every rule in
R is of the form

A → BC

A → a

witha, B, C ∈ V and a ∈ Σ.
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Chomsky Normal
Form

Theorem: Any context-free language is generated by a context-free gram-
mar in Chomsky normal form

Proof Sketch: Any context-free grammar can be converted to a grammar in Chomsky
normal form.
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Chomsky Normal
Form

Example: Convert the following CFG to Chomsky Normal Form (CNF):

S → aX|Y b

X → S|ε
Y → bY |b

Step 1 - Kill all ε productions: By inspection, the only nullable nonterminal is X. Delete all
ε productions and add new productions, with all possible combinations of the nullable X

removed. The new CFG, without ε productions, is:

S → aX|a|Y b

X → S

Y → bY |b
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Chomsky Normal
Form

Step 2 - Kill all unit productions: The only unit production is X → S, where the S can be
replaced with all SÕs non-unit productions (i.e. aX, a, and Y b). The new CFG, without
unit productions, is:

S → aX|a|Y b

X → aX|a|Y b

Y → bY |b

Step 3 - Replace all mixed strings with solid nonterminals. Create extra productions that
produce one terminal, when doing the replacement. The new CFG, with a RHS
consisting of only solid nonterminals or one terminal is:

S → AX|Y B|a
X → AX|Y B|a
Y → BY |b
A → a

B → b
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Beyond CFL’s
Are there languages beyond context-free languages? Yes, consider

L = {anbncn | a, b, c ∈ Σ and n ≥ 0}.

Our stack approach does not work anymore because we need to keep track of three
entities.
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CFL Pumping Lemma

Theorem: [Pumping Lemma for Context-free Languages] If A is a context-
free language then there is a number p (the pumping length) where, if s

is any string A of length at least p, then s may be divided into five pieces
s = uvxyz satisfying the conditions

1. for each i ≥ 0, uvixyiz ∈ A,

2. |vy| > 0,

3. |vxy| ≤ p.
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CFL Pumping Lemma

As before we can use the pumping lemma to show that certain languages are not
context-free.

Theorem: The language A = {anbncn | n ≥ 0} is not context free.

Proof: Proof by contradiction using the pumping lemma. If the language is context free
then there should be some string s ∈ A with |s| ≥ p where p is the pumping length. Let
s = apbpcp be that string. The pumping lemma state that we can split up the string into
s = uvxyz such that uvixyiz ∈ A for all i ≥ 0. Given conditions 2 and 3 of the pumping
lemma this is clearly not possible. �
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CFL Pumping Lemma

Observations: Where does the pumping length come from? We cannot use a pumping
length derived from the PDA because the PDA now contains an infinite structure making
the argument of a forced looping given a string with the length of at least the number
states difficult.

However, we can look at looping during derivations in grammars.
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CFL Pumping Lemma

Consider the following grammar in Chomsky normal form of the language
L = {an | n > 0},

A → AA

A → a

The longest string we can generate without repeating a rule from the start symbol to a
leaf node is ‘aa’,
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That means, the derivation of any string with a length > 2 will force a recursive
application of the first rule – that is, the derivation loops! But this would also mean that
the associated PDA would loop! – p. 19/2



CFL Pumping Lemma

Also notice that for a grammar in Chomsky normal form the length of a generated string
s is related to the levels t in the derivation tree as

|s| ≤ 2t

We can relate this back to the number of non-terminals: Let V be the set of
non-terminals in the grammar, then |V | is the maximum number of levels in a parse tree
without repeating a rule in any branch. Or in other words, if

|s| > 2|V |

then one of its branches will have a repeated rule.

Check that in the grammar above.
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CFL Pumping Lemma

Example: Consider the grammar in Chomsky normal form for the language

L = {anbn | n > 0},

A → AP

P → QB

Q → AP

A → a

B → b

P → b

Observe that V = {A, B, P, Q}, that is, strings with length ≥ 24 will be generated using
repeated rules.
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CFL Pumping Lemma

Proposition: CFGs with recursive rules have a pumping length.

Proof: Follows directly from the fact that any CFG can be written in Chomsky Normal
Form and that derivations in Chomsky Normal Form grammars are binary trees.
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CFL Pumping Lemma

Example: Consider the CFG for the language

L = {anbn | n > 0},

S → ASB

S → ε

A → a

B → b
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