
Turing Machines

A Turing machine is a FA with an infinite tape as memory.

Initially, the tape contains the input to the Turing machine.

– p. 1/1



Church-Turing Thesis

Why do we study Turing machines?

Intuitive Notion of Algorithms
equals

Turing Machine Algorithms

This equivalence cannot be proved but up to now no algorithm has been found that could
not be implemented on a Turing machine.

– p. 2/1



Turing Machines

Example: Construct a TM, call it M1, that tests whether a string is a member of the
language B = {u#u | u ∈ {0, 1}∗}. That is, if some string w ∈ B then accept otherwise
reject. Assume that the string w is loaded on the tape before the machine runs; the tape
will look something like this for w = 101#101,

1 0 1 # 1 0 1 � . . .

Algorithm:

M1 = “On input string w:

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to
check whether these positions contain the same symbol. If they do not, or if no # is
found, reject. Cross off symbols as they are checked to keep track of which symbols
correspond.

2. When all symbols to the left of the # have been crossed off, check for any remaining
symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

– p. 3/1



Turing Machines

– p. 4/1



Turing Machines

Example: Construct a machine M that tests whether a string belongs to the language

L = {aibjck | i, j, k ≥ 0 ∧ i = k = j}.

Algorithm:

M = “On input string w:

1. Scan across the tape and make sure the a’s, b’s, and c’s are properly ordered.

2. Scan across the tape and count the numbers of a’s, b’s, and c’s. If the numbers do
not match, reject.

3. Otherwise, accept."

– p. 5/1



Formal Definition

NOTE: A TM computes until it enters either an accept or reject state.

– p. 6/1



M1 Revisited
L(M1) = {u#u | u ∈ {0, 1}∗}

NOTE: Transition into qreject are implicit on symbols not appearing at states.

– p. 7/1



Configurations

NOTE: The current state, the current tape contents, and the current head location is
called a configuration.

start configuration: the TM is in state q0 with the tape head pointing to the leftmost
position.

halting configuration: a state in which the machine is either in an accept state (accepting

configuration) or in a reject state (rejecting configuration)

– p. 8/1



TM’s & Languages

Three outcomes are possible when a TM computes: accept, reject, or loop.

This lead to the following definitions.

Definition: Call a language Turing-recognizable if some Turing
machine recognizes it.

The problem with TM’s that recognize a language is that they might loop on some inputs.
We prefer machines that always halt. We call such machines deciders.

Definition: Call a language Turing-decidable or simply decidable if some
Turing machine decides it.

Deciders will answer definitively on the question whether a string belongs to a language
or not.

NOTE: Every decidable language is Turing-recognizable (why?).

– p. 9/1



Language Hierarchy

– p. 10/1



Generators
The generators associated with TMs are unconstrained grammars or type-0 grammars.

Recall that a type-0 grammar G = (V, Σ, R, s) is a grammar where the shape of each
rule in R is completely unrestricted:

α → β

with α, β ∈ (V ∪ Σ)∗.

– p. 11/1



Generators
Example: The non-context-free language

L = {aibjck | i, j, k ≥ 0}

is generated by the following type-0 grammar G = (V, Σ, R, s),

V = {S, B},

Σ = {a, b, c},

The rule set R is as follows,

S → aBSc

S → abc

S → ε

Ba → aB

Bb → bb

s = S.

– p. 12/1



Generators
Observation: Unrestricted term rewriting systems are Turing complete, that is they can
express the same computations that Turing machines can express.a b

aPerhaps not a surprise, because Algebra, Calculus etc. are all just very fancy rewriting systems.
bLater on we will discuss an interesting term rewriting system called the lambda calculus which basically models computing with functions.

– p. 13/1


