
Proofs using
Deciders

Proposition: Let L1 and L2 be decidable languages, then the concatenation L = L1 ◦ L2

is also decidable.

Proof: We show decidability of L by constructing a decider for it. Let M1 and M2 be
deciders for L1 and L2, respectively, then we can construct a decider M for L as follows:

M = "On input w,

1. For each way to split w into two parts, w = w1w2, do:

2. Run M1 on w1.

3. Run M2 on w2.

4. If for any combination M1 and M2 accept, accept; otherwise, reject."

– p. 1/1



Decidability
Let us study some "standard" machines that are deciders.

It turns out that these standard machines help us construct more complicated proofs.

– p. 2/1



Decidability

Theorem: The language

ADFA = {〈B, w〉|B is a DFA that accepts string w}

is decidable.

Proof: We construct a decider MDFA for ADFA.

MDFA = "On input 〈B, w〉, where B is a DFA and w is a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state of the DFA, accept; otherwise, reject."

– p. 3/1



Decidability

Theorem: The language

ANFA = {〈B, w〉|B is an NFA that accepts string w}

is decidable.

Proof: We construct a decider MNFA for ANFA.

MNFA = "On input 〈B, w〉, where B is an NFA and w is a string:

1. Convert NFA B into an equivalent DFA B′ (this is algorithmic, so a TM can do it).

2. Run MDFA on input 〈B′, w〉.
3. If MDFA accepts, accept; otherwise, reject."

– p. 4/1



Decidability

Theorem: The language

AREX = {〈R, w〉|R is a regular expression that generates string w}

is decidable.

Proof: We construct a decider MREX for AREX.

MREX = "On input 〈R, w〉, where R is a regular expression and w is a string:

1. Convert regular expression R into an equivalent DFA R′ (this is algorithmic, so a TM
can do it).

2. Run MDFA on input 〈R′, w〉.
3. If MDFA accepts, accept; otherwise, reject."

– p. 5/1



Decidability

Theorem: The language

EDFA = {〈A〉|A is a DFA and L(A) = ∅}

is decidable.

Proof: We construct a decider MEDFA for EDFA.

MEDFA = "On input 〈A〉, where A is a DFA:

1. Mark the start state of A.

2. Repeat until no new states get marked:

3. Mark any state that has a transition coming into it from any state already marked.

4. If no accept state is marked, accept; otherwise, reject."

– p. 6/1



Decidability

Theorem: The language

EQDFA = {〈A, B〉|A and B are DFAs and L(A) = L(B)}

is decidable.

Proof: In order to show this we construct a new machine C that accepts only those string that either A

or B accepts but not both, i.e.

L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)). (1)

Furthermore, we require that L(C) = ∅ which implies that L(A) = L(B) as needed.

Regular languages are closed under complementation, union, and intersection; therefore we are able
to construct machine C according to (1).

We can now construct a decider MEQDFA for EQDFA.

MEQDFA = "On input 〈A, B〉, where A B are DFAs:

1. Construct DFA C as described in (1).

2. Run MEDFA on input 〈C〉.
3. If MEDFA accepts, accept; otherwise, reject."

– p. 7/1



Decidability

Theorem: The language

ACFG = {〈G, w〉|G is a CFG that generates string w}

is decidable.

Proof Attempt 1: We construct a decider MCFG for ACFG.

MCFG = "On input 〈G, w〉, where G is a CFG and w is a string:

1. Convert CFG G into an equivalent PDA G′ (this is algorithmic, so a TM can do it).

2. Simulate G′ on input w.

3. If the simulation ends in an accept state, accept; otherwise, reject."

⇒ Turns out that this does not work because a PDA is a non-deterministic machine and can have
branches could go on computing forever.

NOTE: in practice we actually do use PDAs to decide membership, since infinite computations are not

a problem since we always "guess" just the appropriate transitions using dynamic programming

techniques and when we cannot guess the appropriate transition that usually signals an error.

– p. 8/1



Decidability

Theorem: The language

ACFG = {〈G, w〉|G is a CFG that generates string w}

is decidable.

Proof Attempt 2: We construct a decider MCFG for ACFG.

MCFG = "On input 〈G, w〉, where G is a CFG and w is a string:

1. Convert CFG G into an equivalent Chomsky normal form G′ (this is algorithmic, so a
TM can do it).

2. List all derivations with 2n − 1 steps, where n is the length of w, except if n = 0, then
list all derivations with 1 step.

3. If any of these derivations generate w, accept; otherwise, reject."

NOTE: now the computation is bounded by 2n − 1 → decider.

– p. 9/1



Decidability

Theorem: The language

ECFG = {〈G〉|G is a CFG and L(G) = ∅}

is decidable.

Proof: We construct a decider MECFG
for ECFG.

MECFG
= "On input 〈G〉, where G is a CFG:

1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

3. Mark any variable A where G has a rule A → U1U2 . . . Uk and each symbol
U1U2 . . . Uk has already been marked.

4. If the start symbol is not marked, accept; otherwise, reject."�

Example:

S → ASA

S → aB

A → B

A → S

B → b

B → ε – p. 10/1



Decidability

Theorem: Every context-free language is decidable.

Proof: Let A be a CFL, then we know that there must be a CFG G such that L(G) = A. Now we can
construct a decider MA for A as follows:

MA = "On input w, where w is some string:

1. Run MCFG on 〈G, w〉.
2. If MCFG accepts, accept; otherwise, reject."

– p. 11/1



Example
Example: Let

A = {〈M〉|M is a DFA which does not accept any string containing an odd number of 1’s}

Show that A is decidable.

Proof: We need to construct a decider M for A.

M = "On input 〈M〉, where M is a DFA:

1. Construct a DFA O that accepts every string containing an odd number of 1’s.

2. Construct a DFA B such that L(B) = L(M) ∩ L(O).

3. Run MEDFA on input 〈B〉.
4. If MEDFA accepts, accept; otherwise, reject."

– p. 12/1



The Halting Problem

Theorem: The language

AT M = {〈M, w〉|M is a TM and M accepts w.}

is undecidable.

Proof: By contradiction. Assume that there exists a decider H for language AT M . Then,

H(〈M, w〉) =

(
accept if M accepts w

reject if M does not accept w

We construct a new TM D such that

D = "On input 〈Q〉 where Q is a TM:

1. Run H on input 〈Q, 〈Q〉〉.
2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects,

accept."

Now,

D(〈M〉) =

(
accept if M does not accept 〈M〉
reject if M accepts 〈M〉

But...
– p. 13/1



The Halting Problem
Now consider,

D(〈D〉) =

(
accept if D does not accept 〈D〉
reject if D accepts 〈D〉

This is a contradiction. Therefore, neither H nor D can exist and AT M is undecidable.�

– p. 14/1



ATM is
Turing-Recognizable

Theorem: The language

AT M = {〈M, w〉|M is a TM and M accepts w.}

is Turing-Recognizable.

Proof: We construct the TM U that recognizes AT M ,

U = "On input 〈M, w〉 where M is a TM and w is a string:

1. Simulate M on string w.

2. If M ever enters its accept state, accept; if M ever enters its reject state,
reject."

– p. 15/1



Non-Turing-Recognizable
Languages

The undecidability of AT M has profound ramifications ⇒ the existence of languages
that are non-algorithmic, that is, languages that are not Turing-recognizable.

One such language is the complement of AT M .

– p. 16/1



Non-Turing-Recognizable
Languages

Theorem: The language AT M is not Turing-recognizable.

Proof: By contradiction. Observe that AT M is undecidable. In addition, observe that
AT M is Turing-recognizable. Now, assume that AT M is also Turing-recognizable.
Observing that a string w is either an element of AT M or an element of AT M we can
construct the following decider for AT M . Let M1 and M2 be recognizers for AT M and
AT M , respectively:

M = "On input w, where w is a string:

1. Run M1 and M2 in parallel on w.

2. If M1 accepts, accept; if M2 accepts, reject."

Note that this machine is a decider because it will halt on every input w. Also note, that
this decider contradicts our theorem that AT M is undecidable. Therefore, our
assumption that AT M is Turing-recognizable must be wrong.

This shows that AT M is not Turing-recognizable.�

– p. 17/1


