Proofs using Deciders

Proposition: Let L_1 and L_2 be decidable languages, then the concatenation $L = L_1 \circ L_2$ is also decidable.

Proof: We show decidability of *L* by constructing a decider for it. Let M_1 and M_2 be deciders for L_1 and L_2 , respectively, then we can construct a decider *M* for *L* as follows:

M = "On input w,

- 1. For each way to split w into two parts, $w = w_1 w_2$, do:
- 2. Run M_1 on w_1 .
- 3. Run M_2 on w_2 .
- 4. If for any combination M_1 and M_2 accept, *accept*, otherwise, *reject*."

Let us study some "standard" machines that are deciders.

It turns out that these standard machines help us construct more complicated proofs.

Theorem: The language

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts string } w \}$

is decidable.

Proof: We construct a decider M_{DFA} for A_{DFA} .

 M_{DFA} = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state of the DFA, accept, otherwise, reject."

Theorem: The language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts string } w \}$

is decidable.

Proof: We construct a decider M_{NFA} for A_{NFA} .

 M_{NFA} = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

1. Convert NFA B into an equivalent DFA B' (this is algorithmic, so a TM can do it).

2. Run M_{DFA} on input $\langle B', w \rangle$.

3. If *M*_{DFA} accepts, *accept*, otherwise, *reject*."

Theorem: The language

 $A_{\mathsf{REX}} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$

is decidable.

Proof: We construct a decider M_{REX} for A_{REX} .

 M_{REX} = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:

1. Convert regular expression R into an equivalent DFA R' (this is algorithmic, so a TM can do it).

2. Run M_{DFA} on input $\langle R', w \rangle$.

3. If M_{DFA} accepts, accept, otherwise, reject."

Theorem: The language

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$$

is decidable.

Proof: We construct a decider $M_{E_{\mathsf{DFA}}}$ for E_{DFA} .

 $M_{E_{\mathsf{DFA}}}$ = "On input $\langle A \rangle$, where A is a DFA:

1. Mark the start state of A.

2. Repeat until no new states get marked:

3. Mark any state that has a transition coming into it from any state already marked.

4. If no accept state is marked, accept, otherwise, reject."

Theorem: The language

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

is decidable.

Proof: In order to show this we construct a new machine C that accepts only those string that either A or B accepts but not both, i.e.

$$L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)).$$
⁽¹⁾

Furthermore, we require that $L(C) = \emptyset$ which implies that L(A) = L(B) as needed.

Regular languages are closed under complementation, union, and intersection; therefore we are able to construct machine C according to (1).

We can now construct a decider $M_{EQ_{\text{DFA}}}$ for EQ_{DFA} .

 $M_{EQ_{\mathsf{DFA}}}$ = "On input $\langle A, B \rangle$, where A B are DFAs:

1. Construct DFA C as described in (1).

2. Run $M_{E_{\mathsf{DFA}}}$ on input $\langle C \rangle$.

3. If $M_{E_{\mathsf{DFA}}}$ accepts, *accept*, otherwise, *reject*."

Theorem: The language

 $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$

is decidable.

Proof Attempt 1: We construct a decider M_{CFG} for A_{CFG} .

 M_{CFG} = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert CFG G into an equivalent PDA G' (this is algorithmic, so a TM can do it).
- 2. Simulate G' on input w.

3. If the simulation ends in an accept state, accept; otherwise, reject."

 \Rightarrow Turns out that this does *not* work because a PDA is a non-deterministic machine and can have branches could go on computing forever.

NOTE: in practice we actually do use PDAs to decide membership, since infinite computations are not a problem since we always "guess" just the appropriate transitions using dynamic programming techniques and when we cannot guess the appropriate transition that usually signals an error.

Theorem: The language

 $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$

is decidable.

Proof Attempt 2: We construct a decider M_{CFG} for A_{CFG} .

 M_{CFG} = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert CFG G into an equivalent Chomsky normal form G' (this is algorithmic, so a TM can do it).
- 2. List all derivations with 2n 1 steps, where *n* is the length of *w*, except if n = 0, then list all derivations with 1 step.
- 3. If any of these derivations generate w, accept; otherwise, reject."

NOTE: now the computation is bounded by $2n - 1 \rightarrow$ decider.

Theorem: The language

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$$

is decidable.

Proof: We construct a decider $M_{E_{CFG}}$ for E_{CFG} .

 $M_{E_{\mathsf{CFG}}}$ = "On input $\langle G \rangle$, where G is a CFG:

- 1. Mark all terminal symbols in G.
- 2. Repeat until no new variables get marked:
- 3. Mark any variable A where G has a rule $A \to U_1 U_2 \dots U_k$ and each symbol $U_1 U_2 \dots U_k$ has already been marked.

4. If the start symbol is not marked, *accept*, otherwise, *reject*."

Example:

$$S \rightarrow ASA$$

$$S \rightarrow aB$$

$$A \rightarrow B$$

$$A \rightarrow S$$

$$B \rightarrow b$$

$$B \rightarrow \epsilon$$

Theorem: Every context-free language is decidable.

Proof: Let *A* be a CFL, then we know that there must be a CFG *G* such that L(G) = A. Now we can construct a decider M_A for *A* as follows:

- M_A = "On input w, where w is some string:
- 1. Run M_{CFG} on $\langle G, w \rangle$.
- 2. If M_{CFG} accepts, accept, otherwise, reject."

Example

Example: Let

 $A = \{\langle M \rangle | M \text{ is a DFA which does not accept any string containing an odd number of 1's} \}$

Show that *A* is decidable.

Proof: We need to construct a decider M for A.

 $M = "On input \langle M \rangle$, where M is a DFA:

- 1. Construct a DFA O that accepts every string containing an odd number of 1's.
- 2. Construct a DFA *B* such that $L(B) = L(M) \cap L(O)$.
- 3. Run $M_{E_{\mathsf{DFA}}}$ on input $\langle B \rangle$.
- 4. If $M_{E_{\mathsf{DFA}}}$ accepts, *accept*; otherwise, *reject*."

The Halting Problem

Theorem: The language

$$A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w. \}$$

is undecidable.

Proof: By contradiction. Assume that there exists a decider H for language A_{TM} . Then,

 $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$

We construct a new TM D such that

- $D = "On input \langle Q \rangle$ where Q is a TM:
- 1. Run *H* on input $\langle Q, \langle Q \rangle \rangle$.
- 2. Output the opposite of what *H* outputs; that is, if *H* accepts, *reject* and if *H* rejects, *accept*."

Now,

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

But...

The Halting Problem

Now consider,

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

This is a contradiction. Therefore, neither H nor D can exist and A_{TM} is undecidable.

A_{TM} is Turing-Recognizable

Theorem: The language

 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w. \}$

is Turing-Recognizable.

Proof: We construct the TM U that recognizes A_{TM} ,

 $U = "On input \langle M, w \rangle$ where M is a TM and w is a string:

- 1. Simulate M on string w.
- 2. If *M* ever enters its accept state, *accept*, if *M* ever enters its reject state, *reject*."

Non-Turing-Recognizable Languages

The undecidability of A_{TM} has profound ramifications \Rightarrow the existence of languages that are non-algorithmic, that is, languages that are not Turing-recognizable.

One such language is the complement of A_{TM} .

Non-Turing-Recognizable Languages

Theorem: The language $\overline{A_{TM}}$ is not Turing-recognizable.

Proof: By contradiction. Observe that A_{TM} is undecidable. In addition, observe that A_{TM} is Turing-recognizable. Now, assume that $\overline{A_{TM}}$ is also Turing-recognizable. Observing that a string w is either an element of A_{TM} or an element of $\overline{A_{TM}}$ we can construct the following decider for A_{TM} . Let M_1 and M_2 be recognizers for A_{TM} and $\overline{A_{TM}}$, respectively:

- M = "On input w, where w is a string:
- 1. Run M_1 and M_2 in parallel on w.
- 2. If M_1 accepts, *accept*, if M_2 accepts, *reject*."

Note that this machine is a decider because it will halt on every input w. Also note, that this decider contradicts our theorem that A_{TM} is undecidable. Therefore, our assumption that $\overline{A_{TM}}$ is Turing-recognizable must be wrong.

This shows that $\overline{A_{TM}}$ is not Turing-recognizable. \Box