Reducibility

We say that a problem Q reduces to problem P if we can use P to solve Q.

In the context of decidability we have the following "templates":

If A reduces to B and B is decidable, then so is A. (1)

and

If A reduces to B and A is undecidable, then so is B.

The template (??) allows us to set up proofs by contradiction to prove undecidability.

(2)

A_{TM}

Recall the A_{TM} language:

Theorem: The language

$$A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w. \}$$

is undecidable.

Reducibility

Theorem: The language

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

is undecidable.

Proof: Proof by contradiction. We assume that $HALT_{TM}$ is decidable. We show that A_{TM} is reducible to $HALT_{TM}$ by constructing a machine based on $HALT_{TM}$ that will decide A_{TM} .

Let Q be a TM that decides $HALT_{TM}$. The we can construct a decider S that decides A_{TM} as follows,

 $S = "On input \langle M, w \rangle$, where M is a TM and w a string:

- 1. Run Q on $\langle M, w \rangle$.
- 2. If Q rejects, reject.
- 3. If Q accepts, simulate M on w until it halts.
- 4. If *M* has accepted, *accept*, if *M* has rejected, *reject*."

We have shown that A_{TM} is undecidable, therefore this is a contradiction and our assumption that $HALT_{TM}$ is decidable must be incorrect. \Box

Properties of L(M)

Theorem: The language

$$E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

is undecidable.

Proof: By contradiction. Assume E_{TM} is decidable and Q is the decider. We show that A_{TM} reduces to E_{TM} by constructing the following decider S for A_{TM} ,

 $S = "On input \langle M, w \rangle$, where M is a TM and w a string:

1. Build the machine M_1 as follows,

 M_1 = "On input x:

1. If $x \neq w$, reject.

2. If x = w, run M on input w and *accept* if M does."

2. Run Q in $\langle M_1 \rangle$.

3. If Q accepts, reject; if Q rejects, accept."

But this machine cannot exist, therefore our assumption must be wrong.

Properties of L(M)

Theorem: The language

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

is undecidable.

Proof: By contradiction. Assume EQ_{TM} is decidable and Q is the decider. We show that E_{TM} reduces to EQ_{TM} by constructed the following decider S for E_{TM} ,

 $S = "On input \langle M \rangle$, where M is a TM:

1. Run Q on input $\langle M, M' \rangle$ where M' is a TM that rejects all inputs.

2. If Q accepts, accept, if Q rejects, reject."

But this machine cannot exist since E_{TM} is undecidable, therefore our assumption must be wrong.

Rice's Theorem

In general,

Theorem: Testing any property of languages recognized by Turing machines is undecidable.

Proof: By contradiction. Let P be a non-trivial property, then we want to show that

 $L_P = \{ \langle M \rangle | L(M) \text{ satisfies } P \},\$

is undecidable. ^a Assume that L_P is decidable and M_P is a decider. We now show that we can construct a decider S for A_{TM} .

 $S = "On input \langle M, w \rangle$, where M is a TM and w a string:

- 1. Use M and w to construct the following TM M': M' = "On input x:
 - (a) Simulate M on w. If it halts and rejects, *reject*. If it accepts, proceed to stage (b).
 - (b) Simulate some T on x, where $\langle T \rangle \in L_P$. If it accepts, accept." ^b

2. Use M_P to determine whether $\langle M' \rangle \in L_P$. If YES, accept. If NO, reject."

It is easy to see that $\langle M' \rangle \in L_P$ iff M accepts w, because $\langle T \rangle \in L_P$. Since A_{TM} is not decidable, this machine cannot exist and our assumption that L_P is decidable must be incorrect. \Box

^aBy non-trivial we mean that $L_P \neq \emptyset$ nor does it contain all TM's.

^bBecause L_P is not trivial some $\langle T \rangle \in L_P$ has to exist.

Mapping Reducibility \Rightarrow an computational approach to problem reduction.

Definition: A function $f: \Sigma^* \to \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

This allows us to formally define mapping reducibility,

Definition: Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every w,

 $w \in A \Leftrightarrow f(w) \in B.$

The function f is call the *reduction* from A to B.

Observation: The function f does not have to be a correspondence (neither one-to-one nor surjective). But, it is not allowed to map elements $w \notin A$ into B.

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let M be a decider for B and let f be a reduction from A to B, then we can construct a decider N for A as follows:

N = "On input w:

1. Compute f(w).

2. Run M on f(w) and output whatever M outputs."

Clearly, $w \in A$ if $f(w) \in B$ since f is a reduction.

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Proof: Assume that *B* is decidable, let *M* be a decider for *B* and let *f* be a reduction from *A* to *B*, then we can construct a decider *N* for *A* as follows:

N = "On input w:

- 1. Compute f(w).
- 2. Run M on f(w) and output whatever M outputs."

But, since A is undecidable by assumption this machine cannot exist and therefore our assumption that B is decidable must be wrong. \Box

The Halting Problem

Let $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM and halts on } w\}$. We construct a reduction from A_{TM} to $HALT_{TM}$ such that

 $\langle M, w \rangle \in A_{TM} \Leftrightarrow \langle M', w \rangle \in HALT_{TM}.$

The following machine F computes the reduction:

 $F = "On input \langle M, w \rangle$:

1. Construct the following machine M':

M' = "on input x:

- 1. Run M on x.
- 2. If M accepts, accept.
- 3. if M rejects, loop."
- 2. Output $\langle M', w \rangle$."

Observe that $\langle M', w \rangle \in HALT_{TM}$ if and only if $\langle M, w \rangle \in A_{TM}$ as required. If the input to *F* is not an element of *A* we assume that *F* maps it into some string not in *B*.

Reductions

Observation: Reductions between languages do not always exist. That is, it is not always possible to specify a computable function that reduces one language to another.

Theorem: If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be a recognizer for B and let f be a reduction from A to B, then we can construct a recognizer N for A as follows:

N = "On input w:

1. Compute f(w).

2. Run M on f(w) and output whatever M outputs."

Clearly, if $w \in A$ then $f(w) \in B$ since f is a reduction. Thus M accepts f(w) whenever $w \in A.\Box$

Corollary: If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Theorem: The language

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

is not Turing-recognizable.

Proof: To show EQ_{TM} is not Turing-recognizable we show that A_{TM} is reducible to $\overline{EQ_{TM}}$,^a that is

$$\langle M, w \rangle \in A_{TM} \Leftrightarrow F(\langle M, w \rangle) \in \overline{EQ_{TM}}.$$

The following machine accomplishes that

 $F = "On input \langle M, w \rangle$:

 Construct the two machines M₁ and M₂: M₁ = "On any input: *reject*." M₂ = "On any input: run M on w, if it accepts, *accept*."
Output ⟨M₁, M₂⟩."

^aWe make use of the fact that the complement of a Turing-recognizable language is not Turing-recognizable.