‘ Reducibility

We say that a problem @ reduces to problem P if we can use P to solve Q.

In the context of decidability we have the following “templates”:

If A reducesto B and B is decidable, then so is A. (1)

and

If A reducesto B and A is undecidable, then so is B. (2)

The template (??) allows us to set up proofs by contradiction to prove undecidability.

-p. 1/7

Recall the Ar,, language:

Theorem: The language

Aprpy = {(M,w)|M isaTM and M accepts w.}

is undecidable.

-p. 2/~

Reducibility

Theorem: The language

HALTry = {{(M,w)|M isaTM and M halts on input w}

Is undecidable.

Proof: Proof by contradiction. We assume that H ALT'r, is decidable. We show that A1, is
reducible to H A LTt ;s by constructing a machine based on H A LT, that will decide Ary.

Let Q be a TM that decides HA LT+ ;. The we can construct a decider S that decides A+ as
follows,

S ="Oninput (M, w), where M is a TM and w a string:
1. Run Q on (M, w).

2. If Q rejects, reject.

3. If Q accepts, simulate M on w until it halts.

4. If M has accepted, accept; if M has rejected, reject.”

We have shown that A1 is undecidable, therefore this is a contradiction and our assumption that
HALT~T s is decidable must be incorrect. O

—p. 3/~

\ Properties of L(M)

Theorem: The language
Ery = {(M)|MisaTMand L(M) = 0}

IS undecidable.

Proof: By contradiction. Assume E1,, is decidable and @ is the decider. We show that
A7 s reduces to E1 s by constructing the following decider S for Ay,
i S ="On input (M, w), where M is a TM and w a string:

1. Build the machine M as follows,
My ="On input x:
1. If z £ w, reject.
2. If x = w, run M on input w and accept if M does."

2. Run Qin (Mjy).

3. If @ accepts, reject; if) rejects, accept.”

But this machine cannot exist, therefore our assumption must be wrong.

—p. 47

~ Properties of L(M)

Theorem: The language
EQryn = {{(M1, M2)|M; and M2 are TMs and L(M;) = L(Ma2)}

IS undecidable.

Proof: By contradiction. Assume EQ s IS decidable and @ is the decider. We show that
Er reduces to EQ s by constructed the following decider S for E1ay,

i S ="Oninput (M), where M is a TM:
1. Run Q oninput (M, M’) where M’ is a TM that rejects all inputs.

2. If Q accepts, accept; if () rejects, reject.”

But this machine cannot exist since E 1, Is undecidable, therefore our assumption must
be wrong.

—p. 5/7

Rice’'s Theorem

In general,

Theorem: Testing any property of languages recognized by Turing machines is un-
decidable.

Proof: By contradiction. Let P be a non-trivial property, then we want to show that
Lp = {{(M)|L(M) satisfies P},

is undecidable. Assume that L p is decidable and M p is a decider. We now show that we can
construct a decider S for A1 s.
S ="Oninput (M, w), where M is a TM and w a string:

1. Use M and w to construct the following TM M’:
M’ ="On input z:
(a) Simulate M on w. If it halts and rejects, reject. If it accepts, proceed to stage (b).
(b) Simulate some T on x, where (T') € Lp. If it accepts, accept."

2. Use M p to determine whether (M’) € Lp. If YES, accept. If NO, reject.”

It is easy to see that (M') € L p iff M accepts w, because (T') € Lp. Since At is not

decidable, this machine cannot exist and our assumption that L p is decidable must be incorrect. O

@By non-trivial we mean that L p # () nor does it contain all TM’s.

PBecause L p is not trivial some (T') € L p has to exist.

—p. 6/7

‘ Mapping Reducibility

Mapping Reducibility = an computational approach to problem reduction.

Definition: A function f : X* — >* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

This allows us to formally define mapping reducibility,

Definition: Language A is mapping reducible to language B, written A <,,
B, if there is a computable function f : X* — X*, where for every w,

weAs f(w) € B.

The function f is call the reduction from A to B.

Observation: The function f does not have to be a correspondence (neither one-to-one
nor surjective). But, it is not allowed to map elements w ¢ A into B.

—p. 77

Mapping Reducibility

Theorem: If A <,,, B and B is decidable, then A is decidable.

Proof: Let M be a decider for B and let f be a reduction from A to B, then we can
construct a decider N for A as follows:

N ="0On input w:
1. Compute f(w).
2. Run M on f(w) and output whatever M outputs.”

Clearly, w € Aif f(w) € B since f is a reduction.O

—p. 8/~

‘ Mapping Reducibility

Corollary: If A <,,, B and A is undecidable, then B is undecidable.

Proof: Assume that B is decidable, let M be a decider for B and let f be a reduction
from A to B, then we can construct a decider N for A as follows:

N ="0On input w:
1. Compute f(w).
2. Run M on f(w) and output whatever M outputs.”

But, since A is undecidable by assumption this machine cannot exist and therefore our
assumption that B is decidable must be wrong.O

- p. 9/7

The Halting Problem
‘ 1

Let HALTpy = {(M,w)|M is a TM and halts on w}. We construct a reduction from
A1 to HALTr s such that

(M,w) € Aty & <M/,’LU> € HALT7 ;.

The following machine F' computes the reduction:

F ="0On input (M, w):

1. Construct the following machine M"’:
M’ ="on input z:
1. Run M on zx.

2. If M accepts, accepit.
3. if M rejects, loop."

2. Output (M’ w)."

Observe that (M, w) € HALTr), if and only if (M, w) € Apjys as required. If the input
to F'is not an element of A we assume that F' maps it into some string not in B.

—p. 10/7

Reductions

Observation: Reductions between languages do not always exist. That is, it is not always
possible to specify a computable function that reduces one language to another.

—p. 11/7

‘ Mapping Reducibility

Theorem: If A <,, B and B is Turing-recognizable, then A is Turing-
recognizable.

Proof: Let M be a recognizer for B and let f be a reduction from A to B, then we can
construct a recognizer N for A as follows:
N ="0On input w:
1. Compute f(w).
i 2. Run M on f(w) and output whatever M outputs.”

Clearly, if w € A then f(w) € B since f is a reduction. Thus M accepts f(w) whenever
w e A.O

Corollary: If A <,,, B and A is not Turing-recognizable, then B is not
Turing-recognizable.

—p. 12/

Theorem: The language

EQryn = {{(Mq1, Ms)| My and M5 are TMs and L(M1) = L(M2)}

IS not Turing-recognizable.

Proof: To show E Qs is not Turing-recognizable we show that Ay, is reducible to EQrs,? thatis

<M,w) € Arpny & F((M,w)) € EQr .
The following machine accomplishes that
F ="Oninput (M, w):

1. Construct the two machines M, and Ms:

My ="0On any input: reject."

Mo ="0On any input: run M on w, if it accepts, accept."
2. OUtpUt <M1, M2>."

O

a\We make use of the fact that the complement of a Turing-recognizable language is not Turing-recognizable.

—p. 13/7

