
Reducibility
We say that a problem Q reduces to problem P if we can use P to solve Q.

In the context of decidability we have the following “templates”:

If A reduces to B and B is decidable, then so is A. (1)

and

If A reduces to B and A is undecidable, then so is B. (2)

The template (??) allows us to set up proofs by contradiction to prove undecidability.

– p. 1/?



ATM

Recall the AT M language:

Theorem: The language

AT M = {〈M, w〉|M is a TM and M accepts w.}

is undecidable.

– p. 2/?



Reducibility

Theorem: The language

HALTT M = {〈M, w〉|M is a TM and M halts on input w}

is undecidable.

Proof: Proof by contradiction. We assume that HALTT M is decidable. We show that AT M is
reducible to HALTT M by constructing a machine based on HALTT M that will decide AT M .

Let Q be a TM that decides HALTT M . The we can construct a decider S that decides AT M as
follows,

S = "On input 〈M, w〉, where M is a TM and w a string:

1. Run Q on 〈M, w〉.
2. If Q rejects, reject.

3. If Q accepts, simulate M on w until it halts.

4. If M has accepted, accept; if M has rejected, reject."

We have shown that AT M is undecidable, therefore this is a contradiction and our assumption that
HALTT M is decidable must be incorrect. �

– p. 3/?



Properties of L(M)

Theorem: The language

ET M = {〈M〉|M is a TM and L(M) = ∅}

is undecidable.

Proof: By contradiction. Assume ET M is decidable and Q is the decider. We show that
AT M reduces to ET M by constructing the following decider S for AT M ,

S = "On input 〈M, w〉, where M is a TM and w a string:

1. Build the machine M1 as follows,
M1 = "On input x:

1. If x �= w, reject.
2. If x = w, run M on input w and accept if M does."

2. Run Q in 〈M1〉.
3. If Q accepts, reject; if Q rejects, accept."

But this machine cannot exist, therefore our assumption must be wrong.

– p. 4/?



Properties of L(M)

Theorem: The language

EQT M = {〈M1, M2〉|M1 and M2 are TMs and L(M1) = L(M2)}

is undecidable.

Proof: By contradiction. Assume EQT M is decidable and Q is the decider. We show that
ET M reduces to EQT M by constructed the following decider S for ET M ,

S = "On input 〈M〉, where M is a TM:

1. Run Q on input 〈M, M ′〉 where M ′ is a TM that rejects all inputs.

2. If Q accepts, accept; if Q rejects, reject."

But this machine cannot exist since ET M is undecidable, therefore our assumption must
be wrong.

– p. 5/?



Rice’s Theorem
In general,

Theorem: Testing any property of languages recognized by Turing machines is un-
decidable.

Proof: By contradiction. Let P be a non-trivial property, then we want to show that

LP = {〈M〉|L(M) satisfies P},

is undecidable. a Assume that LP is decidable and MP is a decider. We now show that we can
construct a decider S for AT M .

S = "On input 〈M, w〉, where M is a TM and w a string:

1. Use M and w to construct the following TM M ′:
M ′ = "On input x:

(a) Simulate M on w. If it halts and rejects, reject. If it accepts, proceed to stage (b).
(b) Simulate some T on x, where 〈T 〉 ∈ LP . If it accepts, accept." b

2. Use MP to determine whether 〈M ′〉 ∈ LP . If YES, accept. If NO, reject."

It is easy to see that 〈M ′〉 ∈ LP iff M accepts w, because 〈T 〉 ∈ LP . Since AT M is not
decidable, this machine cannot exist and our assumption that LP is decidable must be incorrect. �

aBy non-trivial we mean that LP �= ∅ nor does it contain all TM’s.
bBecause LP is not trivial some 〈T 〉 ∈ LP has to exist. – p. 6/?



Mapping Reducibility

Mapping Reducibility ⇒ an computational approach to problem reduction.

Definition: A function f : Σ∗ → Σ∗ is a computable function if some Turing
machine M , on every input w, halts with just f(w) on its tape.

This allows us to formally define mapping reducibility,

Definition: Language A is mapping reducible to language B, written A ≤m

B, if there is a computable function f : Σ∗ → Σ∗, where for every w,

w ∈ A ⇔ f(w) ∈ B.

The function f is call the reduction from A to B.

Observation: The function f does not have to be a correspondence (neither one-to-one
nor surjective). But, it is not allowed to map elements w �∈ A into B.

– p. 7/?



Mapping Reducibility

Theorem: If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be a decider for B and let f be a reduction from A to B, then we can
construct a decider N for A as follows:

N = "On input w:

1. Compute f(w).

2. Run M on f(w) and output whatever M outputs."

Clearly, w ∈ A if f(w) ∈ B since f is a reduction.�

– p. 8/?



Mapping Reducibility

Corollary: If A ≤m B and A is undecidable, then B is undecidable.

Proof: Assume that B is decidable, let M be a decider for B and let f be a reduction
from A to B, then we can construct a decider N for A as follows:

N = "On input w:

1. Compute f(w).

2. Run M on f(w) and output whatever M outputs."

But, since A is undecidable by assumption this machine cannot exist and therefore our
assumption that B is decidable must be wrong.�

– p. 9/?



The Halting Problem
II

Let HALTT M = {〈M, w〉|M is a TM and halts on w}. We construct a reduction from
AT M to HALTT M such that

〈M, w〉 ∈ AT M ⇔ 〈M ′, w〉 ∈ HALTT M .

The following machine F computes the reduction:

F = "On input 〈M, w〉:
1. Construct the following machine M ′:

M ′ = "on input x:

1. Run M on x.
2. If M accepts, accept.
3. if M rejects, loop."

2. Output 〈M ′, w〉."
Observe that 〈M ′, w〉 ∈ HALTT M if and only if 〈M, w〉 ∈ AT M as required. If the input
to F is not an element of A we assume that F maps it into some string not in B.

– p. 10/?



Reductions

Observation: Reductions between languages do not always exist. That is, it is not always
possible to specify a computable function that reduces one language to another.

– p. 11/?



Mapping Reducibility

Theorem: If A ≤m B and B is Turing-recognizable, then A is Turing-
recognizable.

Proof: Let M be a recognizer for B and let f be a reduction from A to B, then we can
construct a recognizer N for A as follows:

N = "On input w:

1. Compute f(w).

2. Run M on f(w) and output whatever M outputs."

Clearly, if w ∈ A then f(w) ∈ B since f is a reduction. Thus M accepts f(w) whenever
w ∈ A.�

Corollary: If A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable.

– p. 12/?



EQTM

Theorem: The language

EQT M = {〈M1, M2〉|M1 and M2 are TMs and L(M1) = L(M2)}

is not Turing-recognizable.

Proof: To show EQT M is not Turing-recognizable we show that AT M is reducible to EQT M ,a that is

〈M, w〉 ∈ AT M ⇔ F (〈M, w〉) ∈ EQT M .

The following machine accomplishes that

F = "On input 〈M, w〉:
1. Construct the two machines M1 and M2:

M1 = "On any input: reject."
M2 = "On any input: run M on w, if it accepts, accept."

2. Output 〈M1, M2〉."

�

aWe make use of the fact that the complement of a Turing-recognizable language is not Turing-recognizable.

– p. 13/?


