
The Other Model: λ Calculus

So far we have only looked at Turing machines as our model.

Question: Where does the Church in the Church-Turing thesis come from?

Answer: Alonzo Church invented the λ calculus to model computing with functions.

Turns out the λ calculus is as powerful as the Turing machine, we are just not used to
thinking in terms of universal computing using just functions.

– p. 1/1

The Other Model: λ Calculus

The next couple of lectures will show that the λ calculus and the Turing machine are
equivalent in terms of computational power.

1. Introduce the λ calculus.

2. Introduce the primitive- and µ-recursive functions.

3. Show that the λ calculus implements the µ-recursive functions.

4. Show that a Turing machine implements the µ-recursive functions.

5. Show that a Turing machine implements the λ-calculus.

6. Show that µ-recursive functions can implement Turing machines.

7. Because of 3 we can conclude that λ calculus can implement Turing machines.

8. From 5 and 7 we conclude that the λ-calculus and Turing machines are
computationally equivalent.

One way to look at the λ calculus is as a term rewriting system.

– p. 2/1

λ Calculus 101
λ-calculus aims to model computation with functions. At the core of this calculus are
λ-expressions of the form

λx. E

denoting functions with a parameter x and a function body E. Here is the variable x is
assumed to be free in E (i.e. the variable is assumed not bound by a λ-operator).

The syntax for the calculus can be summarized by the following context-free grammar,

<function> ::= λ<var>. <expression>

<expression> ::= <var> | <function> | <application>

<application> ::= <expression><expression>

Example:

(λx. x)(λf. (λy. f y))

– p. 3/1

λ Calculus 101
Rules: The calculus is very simple, it essentially consists of only three rules:
α-conversion, β-reduction, and η-conversion.

Notation: Let E and E′ be λ-expression and v a variable, then E[E ′/v] denotes the
expression resulting from substituting E ′ for all occurrences of the variable v in
expression E.

Extensions: We allow for a number of extensions in our calculus all of which can be
implemented in classical λ-calculus but make the calculus easier to use:

naming of functions

pattern matching on structures

constants

– p. 4/1

λ Calculus 101
α-conversion: This rule states that we are allowed to rename variables without changing the meaning
of a function. Formally,

λv. E = λw. E[w/v],

as long as w does not appear freely in E and w is not bound by a λ in E whenever it replaces a v.
Here v and w are variables and E is a λ-expression.

This gives rise to the following equivalences:

λx. x = λy. y

λx. (λx. x)x = λy. (λx. x)y

but note that

λx. λy. x �= λy. λy. y (Why?)

– p. 5/1

λ Calculus 101
β-reduction: This rule expresses the idea of function application. Formally,

(λv. E)E′ = E[E′/v],

where v is a variable, E and E ′ are λ-expressions.

Example:

(λn ∈ N. n + 1)1 = 1 + 1 = 2

Note: When no more β-reductions are possible on a terms then we say that we have
reached a normal form.

– p. 6/1

λ Calculus 101
η-conversion: This rule expresses the idea of extensionality, which in this context is that two functions
are the same if and only if they give the same result for all arguments. Let M be a lambda expression
then the η-conversion converts between M and λx. Mx whenever x does not appear free in M .

Example: Let M be the lambda expression λn. n + 1, then applying the η-conversion we have
λx. (λn. n + 1) x.

We can formally show that λn. n + 1 and λx. (λn. n + 1) x are equivalent expressions:

λx. (λn. n + 1) x = λx. x + 1 (β-reduction)

= λn. n + 1 (α-conversion)

– p. 7/1

λ Calculus 101
The β-reduction rule is perhaps obvious, since it actually allows us to compute the value of a function application, but
what about the α-conversion? The rule states that renaming unbound variables does not change the nature of the
function. Why is this useful? Consider the function λn ∈ N. n + 1 which is the successor function. Let’s use this
function to construct the function λn ∈ N. n + 2,

λn ∈ N. (λn ∈ N. n + 1)n + 1

Pretty confusing...let’s use the α-conversion rule to rename the λ-bound variable of the inner successor function,

λn ∈ N. (λk ∈ N. k + 1)n + 1

More readable because the scoping of the λ-bound variables is now explicit.

– p. 8/1

λ Calculus 101
Examples: Compute the normal forms of the following λ-expressions:

1. (λx. x) 2

2. (λx. (x, x)) 2

3. (λ(x, y). (x, y, z)) (5, 3)

4. (λ(x, y). y) (5, 3)

5. (λx. (y, w)) 2

6. (λx. x) (λx. x)

7. (λx. (x x)) (λx. (x x))

8. We let sequences of values be represented by a :: b :: c :: [], for example the string ‘fun’ would be the
sequence of symbols f :: u :: n :: [], then what is the result of the following computation,

(λx :: q. q)(f :: u :: n :: [])

9. We call the expression c? x : y a conditional expression which returns x if c evaluates to true and it returns y if
c evaluates to false. Given this, what does the following expression evaluate to: a

(λxyz. x > 0? y : z) 3 (λq. q − 1) (λp. p + 1) 1

aThe notation (λxyz. E) is a short hand for the function (λx. λy. λz. E).

– p. 9/1

λ-calc computability
Example: We show that the λ-calculus can generate a Turing recognizable language that is not context-free,

L = {a
n

b
n
(ab)

n | n ≥ 0}

We do this in two stages, first we build a function that given an index will generate the corresponding string and then
we build an iterator that uses the generator to generate all the strings in the language (theoretically at least, it would
loop forever).

GEN = λn. APPEND (APPEND (ASTRING n) (BSTRING n)) (ABSTRING n)

APPEND = λxy. (x = [])? y : (HD x) :: (APPEND (TL x) y)

HD = λx :: y. x

TL = λx :: y. y

ASTRING = λn. (n = 0)? [] : (a :: (ASTRING (n − 1))

BSTRING = λn. (n = 0)? [] : (b :: (BSTRING (n − 1))

ABSTRING = λn. (n = 0)? [] : (a :: b :: (ABSTRING (n − 1))

ITER = λx. (STEP 0 [])

STEP = λnk. (STEP (n + 1) ((GEN n) :: k))

– p. 10/1

λ-calc computability
Notes:

Convince yourself that you understand what the λ-expression GEN does. What does
the expression return for an input of 0? 1? 2?

What does the output of the λ-expression ITER look like?

A set of strings generated by a recursive λ-expression is called recursively
enumerable language. Furthermore, the set of all recursively enumerable languages
is exactly the same set as the Turing-recognizable languages.a

a
We will see that is true later when we show that the lambda-calculus and the Turing machine are computationally equivalent.

– p. 11/1

λ-calc computability
Example: To highlight the fact that we can construct algorithms at par with the Turing
machine in the λ-calculus, let’s us build a recognizer for the Turing-recongizable
language

L = {ananan | n ≥ 0}
We will make use of the fact that for any string s ∈ L we havea

ananan = a3n

for any n ≥ 0. We construct the λ-expression R that will recognize this language,

R = λx. (CHECKA x) ∧ (DIV3 x)

CHECKA = λx. x = []? TRUE : ((HD x) �= a? FALSE : (CHECKA (TL x)))

DIV3 = λx. x = []? TRUE : ((LENGTH x) < 3? FALSE : (DIV3 (TL (HD (HD x)))))

LENGTH = λx. x = []? 0 : 1 + (LENGTH (TL x))

HD = λx :: y. x

TL = λx :: y. y

a
Easily shown to be true by induction on n. – p. 12/1

