The λ -calculus is very low level. Here we investigate functions in a more abstract (mathematical) setting.

This is very similar to writing algorithms in English prose rather than writing actual machine code for the Turing machines.

Function Application and Composition:

Let $f: A \to B$ be a (total) function from A to B, then for every value $x \in A$ we obtain a value $y \in B$,

fx = y

Function application is expressed by the *juxtaposition* of the function and its argument and is evaluated from right to left.

Now assume that we have another function $g: B \to C$ from B into C, then we can apply the function g to the result of f. For every value in $x \in A$ we obtain a value $z \in C$,

$$gfx = gy = z$$

In other words, we just constructed a new function, call it $h : A \rightarrow C$, such that

$$hx = gfx = gy = z$$

We can express the same idea using function composition, \circ , without having to explicitly reference any values in *A*, *B*, or *C*,

$$h = g \circ f$$

and we say that "h is the composition of the function g with function f".

Note, that function composition is computed from right to left.

The Tuple:

Given two elements $x \in A$ and $y \in B$, then the tuple constructs an element of the cross-product $A \times B$,

 $x \in A, y \in B \Rightarrow (x, y) \in A \times B$

This is an important construction because it lets us apply functions to pairs (tuples) of values. Assume we have a function $f : A \times B \rightarrow C$. This function can only be applied to values in the cross-product $A \times B$, but we know how to construct these values – yes, the tuple,

f(x,y) = z

for $x \in A$, $y \in B$, and $z \in C$.

Notice that we consider the tuple and function application separate computational steps.

We can of course generalize this to arbitrarily complex tuples, let $x_1 \in X_1, \ldots, x_n \in X_n$ and let $f: X_1 \times \ldots \times X_n \to Y$, then

 $f(x_1,\ldots,x_n)=y$

for $y \in Y$.

Tuples of Functions:

Something interesting happens when we construct tuples of functions, let $f: A \to B$ and let $g: A \to B$, then

 $(f,g) \in (A \to B) \times (A \to B)$

The pair of functions acts in parallel on an input in A and produces a pair of output values in $B \times B$. Let $a \in A$ and $b_f, b_g \in B$, then

$$(f,g)a = (fa,ga) = (b_f,b_g)$$

with $fa = b_f$ and $ga = b_g$.

Something a little bit more complicated. Let $f: X \times Y \to Z$ and $g: X \times Y \to Z$ with $x \in X, y \in Y$ and $z_1, z_2 \in Z$,

$$(f,g)(x,y) = (f(x,y),g(x,y)) = (z_1,z_2)$$

where $f(x, y) = z_1$ and $g(x, y) = z_2$.

Projection Functions:

Given a tuple

 (x_1,\ldots,x_n)

with $x_1 \in X_1, \ldots, x_n \in X_n$, then we can project the i^{th} component of the tuple with the projection function $p_i^{(n)}: X_1 \times \ldots \times X_n \to X_i$,

 $p_i^{(n)}(x_1,\ldots,x_n)=x_i$

with $1 \leq i \leq n$.

A more concrete example, let $x \in A$ and $y \in B$, then

$$p_1^{(2)}(x,y) = x$$

 $p_2^{(2)}(x,y) = y$

but

$$p_1^{(3)}(x,y) =???$$

 $p_5^{(2)}(x,y) =???$

Putting Projection Functions, Tuples, and Composition together:

Let $f: X_1 \times X_2 \to Y$ and let $(x_1, x_2, x_3) \in X_1 \times X_2 \times X_3$, then

 $f \circ (p_1^{(3)}, p_2^{(3)}) : X_1 \times X_2 \times X_3 \to Y$

Applying this function to our tuple we have

 $f(p_1^{(3)}, p_2^{(3)})(x_1, x_2, x_3) = f(p_1^{(3)}(x_1, x_2, x_3), p_2^{(3)}(x_1, x_2, x_3)) = f(x_1, x_2)$

Here is another example, let $(x_1, x_2) \in X_1 \times X_2$, then

$$(p_1^{(2)}, p_2^{(2)})(x_1, x_2) = (p_1^{(2)}(x_1, x_2), p_2^{(2)}(x_1, x_2)) = (x_1, x_2)$$