Complexity Theory

Up to now we investigated whether a problem is in principle solvable algorithmically, that is, we asked the question whether a particular language is,

Decidable: machine halts on all inputs (total computable functions)

Turing-Recognizable: machine loops forever on some inputs (partially computable functions)

However, we did not investigate the cost of the computation itself - the amount of resources the computation absorbs (time, space, *etc.*)

In the following we discuss time complexity and space complexity.

Furthermore, we assume that we are dealing with total computable functions, that is, the respective language is decidable.

Time Complexity

Definition: Let M be a deterministic TM that halts on all inputs. The *running time* or *time complexity* of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the *maximum number of steps* that M uses on any input of length n.

If f(n) is the running time of M, then we say that M runs in time f(n) and that M is an f(n) time TM. Customarily we use n to represent the length of the input.

Our time complexity analysis is called *worst case analysis* because we only consider the *maximum number of steps* a machine uses on input *n*.

Big-O Notation

Asymptotic analysis or *big-O notation*.

Definition: Let f and g be functions $f, g: \mathbb{N} \to \mathbb{R}^+$. Say that

$$f(n) = O(g(n))$$

if positive integers c and n_0 exist such that for every integer $n \ge n_0$,

 $f(n) \le c g(n).$

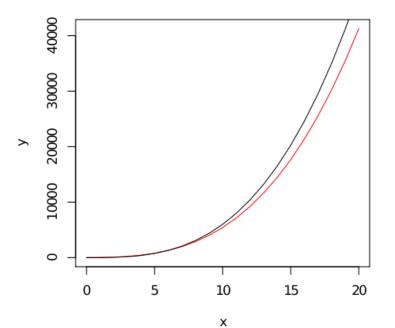
When f(n) = O(g(n)) we say that g(n) is an *(asymptotic) upper bound* for f(n).

Big-O Notation

Example: Let $f(n) = 5n^3 + 2n^2 + 22n + 6$, then only considering the highest order term and disregarding all constants and coefficients we get

$$f(n) = O(n^3).$$

We can show that this satisfies our formal definition of asymptotic analysis by letting c = 6 and $n_0 = 10$. Then for any n > 10 we have $f(n) \le 6n^3$.



Big-O Notation

Notes:

- Let $f(n) = 3n \log_2 n + 5n + 3$, then $f(n) = O(n \log n)$. Notice that we dropped the base subscript because $\log_b n = \frac{1}{\log_2 b} \log_2 n$ for any base *b*, that is different logarithms are related to each other by a constant factor.
- $\label{eq:fn} \blacksquare f(n) = O(n^2) + O(n) \Rightarrow f(n) = O(n^2).$

 $f(n) = 2^{O(n)} \Rightarrow f(n) \le 2^{cn}$ for some c and some value n_0 such that $n > n_0$.

Bounds of the form $O(n^k)$ where k > 0 are called *polynomial bounds*. Bounds of the form $2^{O(n^k)}$ where k > 0 are called *exponential bounds*.

Analyzing Algorithms

Example: Given the decidable language $A = \{o^k 1^k | k \ge 0\}$ and a TM M_1 that decides it, where

 M_1 = "On input string w:

- 1. Scan across the tape and *reject* if a 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s remain on the tape.
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- 4. If neither 0s nor 1s remain on the tape *accept*, otherwise *reject*."

To analyze the time complexity of this machine we analyze each stage separately:

- stage 1: The machine scans across the tape to verify that the input is of the form 0^*1^* . Performing this scan uses *n* steps where *n* is the length of the input. Repositioning the head to the beginning of the tape takes another *n* steps. Therefore, this stage takes 2n or O(n) steps.
- stage 2,3: Here the machine scans the input repeatedly. Each scan takes O(n) steps. Since each scan crosses off two symbols at a time, at most n/2 scans can occur. That is $(n/2)O(n) = O(n^2)$.
- stage 4: The machine makes a single scan over the input to decide whether to accept or to reject O(n) steps.

Total time complexity of M_1 on input n is $2O(n) + O(n^2) = O(n^2)$. Can we find a faster algorithm or computational model?

Analyzing Algorithms

Consider the 2-tape machine M_2 ,

 M_2 = "On input string w:

- 1. Scan across tape 1 and *reject* if a 0 is found to the right of a 1.
- 2. Scan across the 0s on tape 1 until the first 1. At the same time copy the 0s to tape 2.
- 3. Scan across the 1s on tape 1 until the end of the input. For each 1 read on tape 1 cross off a 0 on tape 2. If all 0s are crossed off before all 1s are read, *reject*.
- 4. If all 0s have now been crossed off, accept. If any 0s remain, reject."

It is easy to see that each stage of this machine takes O(n) steps - time complexity is O(n) or linear!

Discussion: It is interesting to note that even though computability did not depend on the precise model of computation chosen – time complexity does! We saw that both our machines, M_1 and M_2 , decide the language A, but M_1 did it in time complexity $O(n^2)$ and M_2 decided the language in time complexity O(n).