
Complexity Theory
Up to now we investigated whether a problem is in principle solvable algorithmically, that
is, we asked the question whether a particular language is,

Decidable: machine halts on all inputs (total computable functions)

Turing-Recognizable: machine loops forever on some inputs (partially computable
functions)

However, we did not investigate the cost of the computation itself - the amount of
resources the computation absorbs (time, space, etc.)

In the following we discuss time complexity and space complexity.

Furthermore, we assume that we are dealing with total computable functions, that is, the
respective language is decidable.

– p. 1/7



Time Complexity

Definition: Let M be a deterministic TM that halts on all inputs. The
running time or time complexity of M is the function f : N → N, where
f(n) is the maximum number of steps that M uses on any input of length
n.
If f(n) is the running time of M , then we say that M runs in time f(n)

and that M is an f(n) time TM. Customarily we use n to represent the
length of the input.

Our time complexity analysis is called worst case analysis because we only consider the
maximum number of steps a machine uses on input n.

– p. 2/7



Big-O Notation

Asymptotic analysis or big-O notation.

Definition: Let f and g be functions f, g : N → R
+. Say that

f(n) = O(g(n))

if positive integers c and n0 exist such that for every integer n ≥ n0,

f(n) ≤ c g(n).

When f(n) = O(g(n)) we say that g(n) is an (asymptotic) upper bound for
f(n).

– p. 3/7



Big-O Notation

Example: Let f(n) = 5n3 + 2n2 + 22n + 6, then only considering the highest order term and
disregarding all constants and coefficients we get

f(n) = O(n
3
).

We can show that this satisfies our formal definition of asymptotic analysis by letting c = 6 and
n0 = 10. Then for any n > 10 we have f(n) ≤ 6n3.

– p. 4/7



Big-O Notation
Notes:

Let f(n) = 3n log2 n + 5n + 3, then f(n) = O(n log n). Notice that we dropped the
base subscript because logb n = 1

log2 b
log2 n for any base b, that is different

logarithms are related to each other by a constant factor.

f(n) = O(n2) + O(n) ⇒ f(n) = O(n2).

f(n) = 2O(n) ⇒ f(n) ≤ 2cn for some c and some value n0 such that n > n0.

Bounds of the form O(nk) where k > 0 are called polynomial bounds. Bounds of the form

2O(nk) where k > 0 are called exponential bounds.

– p. 5/7



Analyzing Algorithms

Example: Given the decidable language A = {ok1k|k ≥ 0} and a TM M1 that decides it, where

M1 = "On input string w:

1. Scan across the tape and rejectif a 0 is found to the right of a 1.

2. Repeat the following if both 0s and 1s remain on the tape.

3. Scan across the tape, crossing off a single 0 and a single 1.

4. If neither 0s nor 1s remain on the tape accept, otherwise reject."

To analyze the time complexity of this machine we analyze each stage separately:

stage 1: The machine scans across the tape to verify that the input is of the form 0∗1∗. Performing
this scan uses n steps where n is the length of the input. Repositioning the head to the
beginning of the tape takes another n steps. Therefore, this stage takes 2n or O(n) steps.

stage 2,3: Here the machine scans the input repeatedly. Each scan takes O(n) steps. Since each
scan crosses off two symbols at a time, at most n/2 scans can occur. That is
(n/2)O(n) = O(n2).

stage 4: The machine makes a single scan over the input to decide whether to accept or to reject -
O(n) steps.

Total time complexity of M1 on input n is 2O(n) + O(n2) = O(n2). Can we find a faster algorithm

or computational model? – p. 6/7



Analyzing Algorithms
Consider the 2-tape machine M2,

M2 = "On input string w:

1. Scan across tape 1 and rejectif a 0 is found to the right of a 1.

2. Scan across the 0s on tape 1 until the first 1. At the same time copy the 0s to tape 2.

3. Scan across the 1s on tape 1 until the end of the input. For each 1 read on tape 1 cross
off a 0 on tape 2. If all 0s are crossed off before all 1s are read, reject.

4. If all 0s have now been crossed off, accept. If any 0s remain, reject."

It is easy to see that each stage of this machine takes O(n) steps - time complexity is O(n) or linear!

Discussion: It is interesting to note that even though computability did not depend on the precise

model of computation chosen – time complexity does! We saw that both our machines, M1 and M2,

decide the language A, but M1 did it in time complexity O(n2) and M2 decided the language in time

complexity O(n).

– p. 7/7


	Complexity Theory
	Time Complexity
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Analyzing Algorithms
	Analyzing Algorithms

