
Nondeterministic
Time Complexity

Definition: Let N be a nondeterministic Turing machine that is a decider.
The running time of N is the function f : N → N, where f(n) is the
maximum number of steps that N uses on any branch of its computation
on any input of length n.

– p. 1/

Some Theorems
Theorem: Let t(n) be a function, where t(n) ≥ n, then every t(n) time
multitape Turing machine has an equivalent O(t2(n)) time single tape
Turing machine.

Proof Sketch: It is possible to show that simulating each of the t(n) computation steps of
the multitape machine on a single tape machine takes at most O(t(n)) steps. Therefore,
to simulate the complete multitape computation on a single tape machine will take
t(n) × O(t(n)) = O(t2(n)) steps.

Observation: Moving a computation from a multi-tape machine to a single-tape machine
incurs an polynomial runtime penalty.

– p. 2/

Some Theorems
Theorem: Let t(n) be a function where t(n) ≥ 0, then every t(n) time
nondeterministic single-tape Turing machine has an equivalent 2O(t(n))

time deterministic single-tape Turing machine.

Proof Sketch: Recall that simulating a nondeterministic Turing machine with a deterministic Turing machine can be
viewed as searching the tree of nondeterministic computations for accepting states. Since the nondeterministic TM is
a O(t(n)) time machine, the path from the root to a leaf node is bounded by O(t(n)) steps. There are at most

bO(t(n)) leaf nodes in the tree. Therefore we need to search

O(t(n)) × b
O(t(n))

= b
O(t(n))

= 2
O(t(n))

positions. Now, if we use a multi-tape deterministic TM, then we incur a polynomial penalty,

(2
O(t(n))

)
2

= 2
O(t(n))+O(t(n))

= 2
2O(t(n))

= 2
O(t(n))

.

Searching the tree for an accepting state is an exponential operation bounded by 2O(t(n)) steps.

Observation: Moving a computation from a nondeterministic machine to a deterministic machine incurs an exponential
runtime penalty.

– p. 3/

Time Complexity
Classes

Definition: Let t : N → R+ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decidable by
an O(t(n)) time Turing machine, formally,

TIME(t(n)) = {L|L is a language decided by an O(t(n)) time TM}.

Example: Consider A = {0k1k|k ≥ 0}. We have shown that A ∈ TIME(n2) and also
that A ∈ TIME(n).

Observation: Notice that the same language can be a member of many time complexity
classes depending on how clever we are with devising algorithms.

Observation: Perhaps this classification scheme is too fine grained, it does not capture the
fundamental complexity differences between languages.

– p. 4/

The Class P

Note that the difference between the algorithms of deciding the language A are
polynomial differences, that is, O(n2) versus O(n).

In general we can say that all reasonable deterministic computational models are
polynomially equivalent – that is, any one of them can simulate another with only a
polynomial increase in running time.

Compare this to algorithms that run efficiently on nondeterministic machines; simulating
these algorithms on deterministic machines would incur an exponential increase in
running time.

This motivates the polynomial time class P .

Definition: P is the class of languages that are decidable in polynomial
time on a deterministic Turing machine,

P =
[

k

TIME(nk), for k ≥ 0.

– p. 5/

The Class P

The class P is interesting because:

P is invariant for all models of computation that are polynomially equivalent to the
deterministic single-tape Turing machine.

P roughly corresponds to the class of problems that are realistically solvable on a
computer (i.e., the computer is a reasonable deterministic computational model).

Example: Note that with this definition our language A = {0k1k|k ≥ 0} is clearly a
member of P regardless of which exact algorithm we use to decide it.

– p. 6/

PATH ∈ P

Theorem: PATH ∈ P , where PATH = {〈G, s, t〉| G is a directed graph that
has a directed path from node s to node t }.

Proof: A brute force search for the path does not work, since such an algorithm will run in exponential time (compare to
the tree searching when simulating a nondeterministic TM).

However, we can be clever and implement an incremental search.

M = "On input 〈G, s, t〉:

1. Place a mark on node s.

2. Repeat the following until no additional nodes are marked:

3. Scan all edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node
b, mark node b.

4. If t is marked, accept; otherwise, reject."

Analysis. It is clear that stages 1 and 4 run in constant time (or O(n) where n = |〈G, s, t〉|). Stage 3 runs at most
m times where m is the number of nodes in the graph. Considering that we have to scan the representation of G

every time through the loop we obtain O(m × n) computation steps. Now considering that m = 1
k

× n with
k = 1, 2, . . ., that is, m is a fraction of the total representation. This gives us an overall complexity of the algorithm of

O(m × n) = O(
1

k
× n × n) = O(n

2
).

Thus P AT H ∈ P . �

– p. 7/

CFL ∈ P

Theorem: Every context-free language is in P .

Proof: The brute force method does not work, have to search the full derivation tree for all
possible derivation, we can use the Chomsky normal form for this - but this is an
exponential time problem.

However, we can use dynamic programming where we store previously computed partial
solutions. This is how real parsing algorithms work. Time complexity O(n3).�

– p. 8/

Class NP

This is the class of problems that either have as of yet unknown polynomial solutions or
are intrinsically difficult (simply do not have a polynomial solution).

Definition: We define the nondeterministic time complexity class NTIME as
follows, NTIME(t(n)) = {L|L is a language decided by an O(t(n))

time nondeterministic TM}.

Definition:

NP =
[

k

NTIME(nk), for k ≥ 0.

– p. 9/

