
P and NP

Definition: P is the class of languages that are decidable in polynomial
time on a deterministic Turing machine,

P =
[

k

TIME(nk), for k ≥ 0.

Definition:

NP =
[

k

NTIME(nk), for k ≥ 0.

Observation: In order to prove that a language is a member of a particular complexity
class we simply have to demonstrate than an appropriate algorithm exists.

We have seen this in the case of the directed path in a graph.

– p. 1/16

Properties of P and
NP

Theorem: The complexity class P is closed under complementation.

Proof: Any language L ∈ P can be decided in deterministic polynomial time. Let M be
such a decider for L. To show that P is closed under complementation we show that we
can construct a deterministic polynomial time decider M ′ for L,

M ′ = "On input w, where w is a string:

1. Run M on w.

2. If M accepts, reject; if M rejects, accept."

It is easy to see that this machine runs in deterministic polynomial time. 2

– p. 2/16

Properties of P and
NP

Theorem: The complexity class NP is closed under the Kleene-closure.

Proof: Any language L in NP is decided by some nondeterministic polynomial time TM. Let M be
such a decider for L. To show that NP is closed under the Kleene-closure we need to show that
L∗ ∈ NP , where

L
∗

= {w|w = ∅ or w = w1w2 . . . wk for k ≥ 1 and each wi ∈ L}.

We construct a nondeterministic polynomial time TM M ′ that decides L∗,

M ′ = "On input w, where w is a string:

1. If w = ∅, then accept.

2. Nondeterministically split w into the strings w1w2 . . . wk for k ≥ 1.

3. Run M on each string wi.

4. If M accepts all wi ’s, accept; otherwise, reject."

By realizing that the number of times the machine M is invoked is bounded by O(n) (each |wi| = 1

with n = |w|) and the fact that M is a nondeterministic polynomial time TM, say O(nm), then the

total nondeterministic polynomial runtime is O(nm+1) . Therefore, L∗ ∈ NP . 2

– p. 3/16

Hamiltonian Path
A Hamiltonian path in a directed path is a directed path that goes through each node exactly once.
Formally, HAMPATH = {〈G, s, t〉|G is a directed graph with a Hamiltonian path from s to t}.

No deterministic polynomial time algorithms are know that decide this language.

Theorem:

HAMPATH ∈ NP

Proof: We construct an nondeterministic Turing machine that decides HAMPATH in polynomial
time.

M = "On input 〈G, s, t〉:

1. Nondeterministically generate a permutation of m numbers p1, . . . , pm such that
1 ≤ pi ≤ m where m is the number of nodes in graph G.

2. Check whether p1 = s and pm = t. If either test fails, reject.

3. For each i between 1 and m − 1, check wether (pi, pi+1) is an edge in G. If any are
not, reject. Otherwise, the generated list of numbers represents a Hamiltonian path,
accept."

Analysis. It is easy to see that all the stages run in polynomial time. 2

– p. 4/16

Verifiers
We can define the class NP in an alternative manner using deterministic polynomial
time verifiers.

Definition: A verifier for a language A is a deterministic TM V , where

A = {w|V accepts 〈w, c〉 for some string c}.

Here the string c is called a certificate .

We measure the time of a verifier in terms of the length of w, that is, a polynomial time
verifier run in polynomial time in the length of w.

A language is polynomially verifiable if it has a (deterministic) polynomial time verifier.

Definition: NP is the class of languages that have (deterministic) polyno-
mial time verifiers.

– p. 5/16

Hamiltonian Path
(revisited)

Theorem:

HAMPATH ∈ NP

Proof #2: This time we show that a polynomial time verifier exists for a Hamiltonian path.

Let c be a Hamiltonian path 〈p1 ; pm〉, the we construct the verifier V as follows:

V = "On input 〈〈G, s, t〉, c〉:

1. Verify that |p1 ; pm| = m − 1. If not, reject.

2. Verify that p1 ; pm does not have any repetitions. If any are found, reject.

3. Check wether p1 = s and pm = t. If either fails, reject.

4. For each i between 1 and m − 1, check wether (pi, pi+1) is an edge in G. If any are
not, reject.

5. All test have passed, accept."

– p. 6/16

Deciding vs.
Verifying

Theorem: A language is decided by a nondeterministic polynomial time TM iff it can
be verified by a deterministic polynomial time verifier.

Proof: We show that nondeterministic deciders can be constructed from verifiers and vice versa.

(a) For the ‘⇒’ direction: Let N be the nondeterministic TM that decides the language, then we can
construct a corresponding verifier V as follows,

V = " On input 〈w, c〉, where w and c are strings:

1. Simulate N on w but only follow computations that are described in c (this means N will
only have a single branch of computation).

2. If this branch of computation accepts, accept; otherwise, reject."

(b) For the ‘⇐’ direction: Let V be a polynomial time verifier with runtime nk, then we can construct
the corresponding nondeterministic TM N ,

N = "On input w of length n:

1. Nondeterministically generate a string c with |c| ≤ nk.

2. Run V on 〈w, c〉.

3. If V accepts, accept; otherwise, reject."

– p. 7/16

Cliques
Example: Clique in a graph. A clique in an undirected graph is a subgraph wherein every
two nodes are connected by an edge. A k-clique is a clique that has k node.

A 5-clique.

Formally, expressed as a language,

CLIQUE = {〈G, k〉|G is an undirected graph with a k-clique }.

– p. 8/16

CLIQUE ∈ NP

Theorem:

CLIQUE ∈ NP.

Proof #1: We construct a nondeterministic polynomial time decider.

N = "On input 〈G, k〉:

1. Nondeterministically select a set Q of k nodes where each node is in G.

2. Test whether G contains all edges connecting nodes in Q.

3. If yes, accept; otherwise, reject."

Stage 2 runs in O(n2) with n = |〈G, k〉|. Therefore, there whole machine runs in
nondeterministic polynomial time.

– p. 9/16

CLIQUE ∈ NP

Proof #2: Let c be a k-clique on G, then construct a verifier,

V = "On input 〈〈G, k〉, c〉:

1. Test whether c is a set of k nodes in G.

2. Test whether G contains all edges connecting nodes in Q.

3. If all tests pass, accept; otherwise, reject."

Here, stage 1 and 2 run in O(n2) time, therefore the verifier runs in deterministic
polynomial time.

– p. 10/16

P vs NP

Since a TM is considered a special case of an nondeterminisic TM we have,

P ⊂ NP

It is still an open question whether P = NP , since currently the best known deterministic
algorithms for NP problems use exponential time,

NP ⊆ EXPTIME =
[

k

TIME(2nk

)

(Remember: to simulate a nondeterministic TM on a TM we need exponential time.)

– p. 11/16

NP -Completeness

Definition: A function f : Σ∗ → Σ∗ is a polynomial time computable func-

tion if some (deterministic) polynomial time Turing machine M , on every
input w, halts with just f(w) on its tape.

Definition: Language A is polynomial time mapping reducible , or simply poly-

nomial time reducible , to language B, written A ≤p B, if a polynomial time
computable function f : Σ∗ → Σ∗ exists, where for every w,

w ∈ A ⇔ f(w) ∈ B.

The function f is call the polynomial time reduction from A to B.

– p. 12/16

NP -Completeness

Theorem: If A ≤p B and B ∈ P , then A ∈ P .

Proof: Let M be a polynomial time decider for B and let f be a polynomial time reduction
from A to B, then we can construct a polynomial time decider N for A as follows:

N = "On input w:

1. Compute f(w).

2. Run M on f(w) and output whatever M outputs."

Clearly, if w ∈ A then f(w) ∈ B since f is a reduction. It is easy to see that N runs in
polynomial time.2

– p. 13/16

NP -Completeness

Definition: A language Q is NP-complete if it satisfies two conditions:

1. Q ∈ NP , and

2. every Qi ∈ NP is polynomial time reducible to Q.

– p. 14/16

NP -Completeness

Theorem: If B is NP -complete and B ∈ P , then P = NP

This theorem highlights the importance of NP -complete problems, should a
deterministic polynomial time solutions be found to an NP -complete problem, then the
NP complexity class will collapse into the P complexity class.

– p. 15/16

NP -Completeness

Theorem: If B is NP -complete and B ≤p C for C ∈ NP , then C is
NP -complete.

Proof: Let gi be a polynomial time reduction from any language Ai ∈ NP to B and let f

be the polynomial time reduction from B to C. We know that gi has to exist for all
languages Ai ∈ NP since B is NP -complete. This gives us a polynomial time reduction
f ◦ gi from any language Ai ∈ NP to C. 2

– p. 16/16

	P and NP
	Properties of P and NP
	Properties of P and NP
	Hamiltonian Path
	Verifiers
	Hamiltonian Path (revisited)
	Deciding vs. Verifying
	Cliques
	$CLIQUE in NP$
	$CLIQUE in NP$
	P vs NP
	NP-Completeness
	NP-Completeness
	NP-Completeness
	NP-Completeness
	NP-Completeness

