
Cook-Levin Theorem
In the 1970’s Stephen Cook and Leonid Levin independently discovered that there are
problems in NP whose complexity are related to all other problems in NP – these
problems are called NP -complete problems.

As we have seen, NP -complete problems are related to other NP problems via
polynomial reductions.

The first and most famous NP -complete problem discovered was a problem around the
satisfiability of logic formulas.

– p. 1/1



SAT

A Boolean formula is an expression involving Boolean variables (x, y, etc.) and operations (∧, ∨, ¬,
where ¬x = x),

φ = (x ∧ y) ∨ (x ∧ z).

A Boolean formula is satisfiable if some assignment of true and false to the variables of the formula
makes the formula evaluate to true.

For example, the assignment

x = false

y = true

z = false

will make φ above evaluate to true.

The satisfiability problem is to test whether a Boolean formula is satisfiable, that is

SAT = {〈φ〉|φ is a satisfiable Boolean formula}.

– p. 2/1



SAT

Theorem: (Cook-Levin)

SAT ∈ NP -complete.

Proof Sketch: For an NP -complete problem we need to show that it is in NP and that all A ∈ NP

reduce to it.

(a) It is easy to see that a truth assignment to the variables of a formula can be checked in polynomial
time.

(b) We need to show that A ≤p SAT for all A ∈ NP . This is done by simulating the computations
of a NTM deciding A on some string w using Boolean formulas such that

w ∈ A iff f(w) ∈ SAT

where f converts the string w into the Boolean formula f(w).a�

Note: In some sense this reinforces our notion that first-order logic is a powerful language to reason

about complex problems.

aFor details, please see the Cook-Levin Theorem in the book.

– p. 3/1



3SAT
The 3SAT problem:

A special case of SAT ,

Formulas are in conjunctive normal form (cnf),

(x1 ∨ x2 ∨ x3 ∨ x4)
| {z }

clause

conjunction
z}|{

∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6),

3cnf – each clause in the cnf has only 3 literals (or variables),

(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x6),

We define,

3SAT = {〈φ〉|φ is a satisfiable 3cnf formula}.

– p. 4/1



3SAT

Theorem:

3SAT ∈ NP -complete.

Proof Sketch: We show this by constructing a polynomial time reduction from SAT to 3SAT .

First, observe that any formula φ ∈ SAT can be rewritten in cnf such that φ̂ = c1 ∧ c2 ∧ . . . ∧ cm

where each clause ci is a disjunction of Boolean variables, say z1 . . . zn.

We now construct the polynomial time reduction f : SAT → 3SAT such f(φ̂) = φ3SAT . We
replace each ci in φ̂ by a collection of literal clauses over the variables which appear in ci plus some
additional variables which appear only in these 3 literal clauses. More specifically, let
ci = z1 ∨ z2 ∨ . . . ∨ zk where each zj is a Boolean variable, then

k = 1: Here ci = z1. Use the additional variables yi,1 and yi,2 to construct the clauses in 3cnf

(z1 ∨ yi,1 ∨ yi,2) ∧ (z1 ∨ yi,1 ∨ yi,2) ∧ (z1 ∨ yi,1 ∨ yi,2) ∧ (z1 ∨ yi,1 ∨ yi,2)

k = 2: Here ci = (z1 ∨ z2). Use the additional variable yi,1 to construct the clauses in 3cnf

(z1 ∨ z2 ∨ yi,1) ∧ (z1 ∨ z2 ∨ yi,1)

k = 3: Here ci = (z1 ∨ z2 ∨ z3), already in 3cnf, nothing to do.

– p. 5/1



3SAT
k = 4: Here ci = (z1 ∨ z2 ∨ z3 ∨ z4), use the additional variable yi,1 to construct the clauses in

3cnf

(z1 ∨ z2 ∨ yi,1) ∧ (yi,1 ∨ z3 ∨ z4)

k > 4: Here ci = (z1 ∨ z2 ∨ . . . ∨ zk), use the additional variables yi,1, yi,2, . . . , yi,k−3 to
construct the clauses in 3cnf

(z1 ∨ z2 ∨ yi,1) ∧
(yi,1 ∨ z3 ∨ yi,2) ∧
(yi,2 ∨ z4 ∨ yi,3) ∧
(yi,3 ∨ z5 ∨ yi,4) ∧

. . . ∧
(yi,k−3 ∨ zk−1 ∨ zk)

We now show that f is a polynomial time reduction. First observe that the maximum number of
variables that can occur in a clause of φ̂ is n. Also observe that there are m clauses in φ̂. Therefore,
the maximum number of conversions is bounded by O(nm) which is clearly polynomial. Considering
that the above transformation can also be accomplished in polynomial time we conclude that f is a
polynomial time function.

– p. 6/1



3SAT
We now show that

φ̂ ∈ SAT iff f(φ̂) ∈ 3SAT

For the case that k ≤ 4 we note that whenever φ̂ is satisfied then so is f(φ̂). For the reverse we note
that if f(φ̂) is satisfied we simply restrict the assignments to the variables that appear in φ̂ to obtain
an assignment that satisfies φ̂.

For the case that k > 4, given a truth assignment in some clause ci in φ̂, the case of k = 4 is easily
generalized to this case.

Thus, the satisfiability of φ̂ implies the satisfiability of f(φ̂). To see the converse, simply restrict a

satisfying assignment to variables in f(φ̂) to the variables occurring in φ̂. �

– p. 7/1



CLIQUE

Theorem:

CLIQUE ∈ NP -complete

where CLIQUE = {〈G, k〉|G is an undirected graph with a k-clique }.

Proof: We prove this by a polynomial reduction f from 3SAT to CLIQUE, such that

φk ∈ 3SAT iff f(φk) ∈ CLIQUE,

where φk is a 3cnf formula with k clauses and f(φk) = 〈G, k〉.
Given

φk = (a1 ∨ b1 ∨ c1) ∧ (a1 ∨ b1 ∨ c1) ∧ . . . (ak ∨ bk ∨ ck).

we construct the nodes of the graph as

– p. 8/1



CLIQUE

We construct the edges by connecting all the nodes except for

nodes that are in the same triple, and

nodes that have contradictory labels, i.e., x and x.

Example construction using

φ3 = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

gives rise to the graph

– p. 9/1



CLIQUE

It is easy to see that this is a polynomial time construction (let n be the number of nodes then we see
that algorithm runs in O(n2) time).

We now have to verify the reduction condition

φk ∈ 3SAT iff f(φk) ∈ CLIQUE

First the ’⇒’ direction, suppose that φk has a satisfying assignment, that means that each clause
has at least one literal that is true. In each triple of G we choose one node that corresponds to a true
literal. The number of nodes selected is k, one in each triple. All the selected nodes are connected
by edges. This shows that a satisfying assignment of φk produces a k-clique.

For the converse, assume that G has a k-clique. By construction, no two nodes can occur in the

same triple. Therefore, each of the k triple contain exactly one of the k clique nodes. Each node in

the k-clique denotes an assignment to true for a literal in φk. This is always true because opposing

literals are not connected. �

– p. 10/1



HAMPATH

Recall that HAMPATH = {〈G, s, t〉|G is a directed graph with a Hamiltonian path from s to t}
and a Hamiltonian path is a path in a graph that goes through each node exactly once.

Theorem:

HAMPATH ∈ NP -complete.

Proof Sketch: We know that HAMPATH ∈ NP . It remains to show that A ≤p HAMPATH, for
all A ∈ NP . We show this by a polynomial time reduction f from 3SAT to HAMPATH,

φk ∈ 3SAT iff f(φk) ∈ HAMPATH,

where f(φk) = 〈G, s, t〉.

For details of the construction see the book. . .

– p. 11/1



NP -Hard
Definition: A language Q is NP-hard if it satisfies two conditions:

1. Q �∈ NP , and

2. every Qi ∈ NP is polynomial time reducible to Q.

– p. 12/1



Traveling Salesman
The idea is, given a set of cities (nodes) that are connected via roads (weighted edges), find the
cheapest route through all the cities (find a Hamiltonian path that minimizes the sum of the weights in
the path). Formally,

TSP = {〈G, s, t, w〉|G is directed weighted graph with a minimal Hamiltonian path of weight w

from s to t}.

– p. 13/1



Traveling Salesman

Theorem:

TSP ∈ NP -hard.

Proof: Note, a problem is NP -hard if every L ∈ NP can be reduced to it in polynomial time but the
problem itself is not in NP . No known NP solution exists for TSP (NP problems have polynomial
time verifiers; in TSP it is not possible to verify a certificate in polynomial time). It remains to show
that all L ∈ NP reduce to it in polynomial time. We will show this by a polynomial time reduction f

from HAMPATH to TSP ,

〈G, s, t〉 ∈ HAMPATH iff f(〈G, s, t〉) ∈ TSP,

where f(〈G, s, t〉) = 〈G′, s, t, m〉 with G′ the graph G with a weight of 1 on all of its edges and m

the number of nodes in G. Clearly, the reduction runs in polynomial time. We verify the reduction

condition by first observing that a Hamiltonian path gives rise to a minimal traveling salesman circuit

by the virtue that all Hamiltonian paths in G′ have the same cost. The converse also holds, if we have

a traveling salesman circuit this implies that we have a Hamiltonian path. �

– p. 14/1


