\ Cook-Levin Theorem

In the 1970’s Stephen Cook and Leonid Levin independently discovered that there are
problems in N P whose complexity are related to all other problems in NP — these
problems are called N P-complete problems.

As we have seen, N P-complete problems are related to other N P problems via
polynomial reductions.

The first and most famous N P-complete problem discovered was a problem around the
satisfiability of logic formulas.

—p. 1/

A Boolean formula is an expression involving Boolean variables (x, y, etc.) and operations (A, V, —,
where —x =),

dp=(TANy)V(zxAZ).
A Boolean formula is satisfiable if some assignment of true and false to the variables of the formula
makes the formula evaluate to true.

For example, the assignment
x = false
y = true
z = false

will make ¢ above evaluate to true.

The satisfiability problem is to test whether a Boolean formula is satisfiable, that is

SAT = {(¢)]|¢ is a satisfiable Boolean formula}.

—p. 2/

‘ SAT

Theorem: (Cook-Levin)
SAT € N P-complete.

Proof Sketch: For an IN P-complete problem we need to show thatitisin NP andthatall A € NP
reduce to it.

(a) Itis easy to see that a truth assignment to the variables of a formula can be checked in polynomial
time.

~ (b) We need to show that A <,, SAT forall A € NP. This is done by simulating the computations
of a NTM deciding A on some string w using Boolean formulas such that

w e Aiff f(w) € SAT
where f converts the string w into the Boolean formula f(w).?0O

Note: In some sense this reinforces our notion that first-order logic is a powerful language to reason

about complex problems.

2For details, please see the Cook-Levin Theorem in the book.

—p. 3/1

The 3S AT problem:

B A special case of SAT,
B Formulas are in conjunctive normal form (cnf),

conjunction

N
(x1 VT3 VT3V xq) AN (x3sVZTsVaxg) A (x3VTs),

'

clause
| B 3cnf — each clause in the cnf has only 3 literals (or variables),

(iEl \/E\/@)/\(wg VE\/ZB@;),

We define,
3SAT = {(¢)|¢ is a satisfiable 3cnf formula}.

—p. 4/

‘ 3SAT

Theorem:
3SAT € N P-complete.

Proof Sketch: We show this by constructing a polynomial time reduction from SAT to 3SAT.

First, observe that any formula ¢ € S AT can be rewritten in cnf such that b=ciAcaA...NcCm
where each clause c; is a disjunction of Boolean variables, say z; .. . z,.

We now construct the polynomial time reduction f : SAT — 3SAT such f(g%) = ¢3sar. We
replace each ¢; in ¢ by a collection of literal clauses over the variables which appear in ¢; plus some
additional variables which appear only in these 3 literal clauses. More specifically, let

ci = z1 Vz2 V...V z, Where each z; is a Boolean variable, then

k = 1: Here c; = z;. Use the additional variables y; 1 and y; 2 to construct the clauses in 3cnf

(21 VYi i VYi2) AN(21 VU1 VYi2) AN(21VYi1 VTi2) A(21 VUil VTi2)
k = 2: Here ¢; = (21 V z2). Use the additional variable y, ; to construct the clauses in 3cnf
(21 V2zaVyi1)AN(z1V2z2VYi1)

k = 3: Herec; = (z1 V z2 V z3), already in 3cnf, nothing to do.

—p. 5/

3SAT

k = 4: Here c¢; = (21 V z2 V 23 V z4), use the additional variable y; ; to construct the clauses in
3cnf

(21 V2z2Vys1) N (Uit V23V za)

k > 4: Herec; = (21 V z2 V...V zi), use the additional variables y; 1, yi 2, ..., yi k—3 tO
construct the clauses in 3cnf

(21 V22 VY1)
(W1 V23 V ¥i,2)
(Yi,2 V24 Vyi3)
(Yi,z V25 V ¥i,a)

> > > > >

(Vi k—3 V 2k—1 V 2k)

We now show that f is a polynomial time reduction. First observe that the maximum number of
variables that can occur in a clause of ¢ is n. Also observe that there are m clauses in ¢. Therefore,
the maximum number of conversions is bounded by O (nm) which is clearly polynomial. Considering
that the above transformation can also be accomplished in polynomial time we conclude that f is a
polynomial time function.

—p. 6/

‘ 3SAT

We now show that
b € SAT iff f(§) € 3SAT

For the case that k < 4 we note that whenever ¢ is satisfied then so is f(qB). For the reverse we note
that if f(g%) is satisfied we simply restrict the assignments to the variables that appear in ¢ to obtain
an assignment that satisfies ¢.

For the case that k& > 4, given a truth assignment in some clause c; in ¢, the case of k = 4 is easily
generalized to this case.

Thus, the satisfiability of ¢ implies the satisfiability of f(q@). To see the converse, simply restrict a
satisfying assignment to variables in f(é) to the variables occurring in ¢. O

—p. 7/

Theorem:

CLIQUE € N P-complete

where CLIQU E = {(G, k) |G is an undirected graph with a k-clique }.

Proof: We prove this by a polynomial reduction f from 3S AT to CLIQU E, such that
¢ € 3SAT iff f(¢r) € CLIQUE,

where ¢y, is a 3cnf formula with £ clauses and f(¢r) = (G, k).

Given
x> :(a1Vb1\/cl)/\(al\/bl\/cl)/\...(ak\/bk\/ck).

we construct the nodes of the graph as

Cr 4
L *
(lvg
C' ¢ o Q‘
.I>I 14 V] _L,-‘
Q @ 0o Cp

—p. 8/

We construct the edges by connecting all the nodes except for

M hodes that are in the same triple, and

M hodes that have contradictory labels, i.e., = and .

Example construction using

$p3s = (x1 V1 Vo) A(T1VZ2VT2) A (TT Va2V x2)

gives rise to the graph

—p. 9/

CLIQUE

It is easy to see that this is a polynomial time construction (let » be the number of nodes then we see
that algorithm runs in O(n?) time).

We now have to verify the reduction condition
pr € 3BSAT iff f(¢pr) € CLIQUE

First the "=’ direction, suppose that ¢, has a satisfying assignment, that means that each clause
has at least one literal that is true. In each triple of G we choose one node that corresponds to a true
literal. The number of nodes selected is k, one in each triple. All the selected nodes are connected
by edges. This shows that a satisfying assignment of ¢, produces a k-clique.

For the converse, assume that G has a k-clique. By construction, no two nodes can occur in the
same triple. Therefore, each of the k triple contain exactly one of the k clique nodes. Each node in
the k-clique denotes an assignment to true for a literal in ¢. This is always true because opposing
literals are not connected. O

—p. 10/1

HAMPATH

Recall that HAM PATH = {(G, s, t)|G is a directed graph with a Hamiltonian path from s to ¢}
and a Hamiltonian path is a path in a graph that goes through each node exactly once.

Theorem:

HAMPATH € NP-complete.

Proof Sketch: We know that HAM PATH € N P. It remains to show that A <, HAM PAT H, for

all A € NP. We show this by a polynomial time reduction f from 3SATto HAMPATH,

where f(¢r) = (G, s, t).

¢n € 3SATiff f(¢r) € HAMPATH,

For details of the construction see the book. . .

—p. 11/°

Definition: A language () is NP-hard if it satisfies two conditions:
1. Q¢ NP, and
2. every Q; € NP is polynomial time reducible to Q.

—p. 1211

Traveling Salesman

The idea is, given a set of cities (nodes) that are connected via roads (weighted edges), find the
cheapest route through all the cities (find a Hamiltonian path that minimizes the sum of the weights in
the path). Formally,

TSP = {{(G, s, t,w)|G is directed weighted graph with a minimal Hamiltonian path of weight w
from sto t}.

—p. 13/1

Traveling Salesman

Theorem:
TSP € N P-hard.

Proof: Note, a problem is N P-hard if every L € N P can be reduced to it in polynomial time but the
problem itself is not in N P. No known N P solution exists for T'S P (NN P problems have polynomial
time verifiers; in T'S P it is not possible to verify a certificate in polynomial time). It remains to show
that all L € N P reduce to it in polynomial time. We will show this by a polynomial time reduction f
from HAMPATHto TSP,

(G,s,t) € HAMPATH iff f((G,s,t)) € TSP,

where f({G,s,t)) = (G', s, t, m) with G’ the graph G with a weight of 1 on all of its edges and m
the number of nodes in GG. Clearly, the reduction runs in polynomial time. We verify the reduction
condition by first observing that a Hamiltonian path gives rise to a minimal traveling salesman circuit
by the virtue that all Hamiltonian paths in G’ have the same cost. The converse also holds, if we have
a traveling salesman circuit this implies that we have a Hamiltonian path. O

—p. 14/

