
Space Complexity
Time and space are two of the most important considerations when we seek
practical solutions to computational problems.

Space complexity shares many of the same features of time complexity

Therefore, space complexity serves as a further way of classifying problems
according to their computational difficulty.

We will continue to use the TM as our model, but now we look at the tape space it
consumes during its computation.

– p. 1/

Space Complexity

Definition: Let M be a deterministic TM that halts on all inputs. We define the
space complexity of M to be the function f : N → N, where f(n) is the maximum
number of tape cells that M scans on any input of length n. If the space complexity
of M is f(n), then we also say that M runs in space f(n).

If M is a nondeterministic TM wherein all branches halt on all inputs we define its
space complexity f(n) to be the maximum number of tape cells that M scans on
any branch of its computation on any input of length n.

– p. 2/

Space Complexity

Definition: Let f : N → R
+ be a function. The space complexity classes,

SPACE(f(n)) and NSPACE(f(n)), are defined as follows,

SPACE(f(n)) = {L|L is decided by an O(f(n)) space TM}
NSPACE(f(n)) = {L|L is decided by an O(f(n)) space NTM}

– p. 3/

SAT ∈ SPACE(n)

Theorem:

SAT ∈ SPACE(n)

Proof: By construction.

M = "On input 〈φ〉, where φ is a Boolean formula:

1. For each truth assignment to variables x1, . . . , xm of φ:

2. Evaluate φ on that truth assignment.

3. If φ ever evaluates to true, accept; otherwise, reject."

This algorithm does not run in polynomial time, there are an exponential number of
assignments to the variables,

2 · 2 · . . . · 2| {z }
m

= 2m.

Therefore, as expected, this algorithms runs in 2O(n) deterministic time where n = |φ|.
However, observe that it runs in O(n) deterministic space. The insight is that we can
reuse the space of the variables for the various assignments but we cannot reuse the
time.

– p. 4/

Savitch’s Theorem
There is an interesting relationship between deterministic and nondeterministic space
complexity in the sense that simulating a nondeterministic machine on a deterministic
machine incurs at most a polynomial deterministic space penalty. Formally,

Theorem: (Savitch’s Theorem) For any function f : N → R+, where f(n) ≥
n,

NSPACE(f(n)) ⊆ SPACE(f2(n)).

Proof Sketch: Naive, brute force simulation doesn’t work, but if we are clever and partition
the simulation then we can reuse space – cif. Quicksort. �a

aSee website for a nice proof. Source: Wayne Goddard, An Introduction to the Theory of Computing, 2008.

– p. 5/

PSPACE

Definition: PSPACE is the class of languages that are decidable in poly-
nomial space on a deterministic Turing machine. Formally,

PSPACE =
[
k

SPACE(nk), with k > 0.

Similarly, we define NPSPACE =
S

k NSPACE(nk), for k > 0. But from Savitch’s
theorem it follows that

NPSPACE = PSPACE.

– p. 6/

NPSPACE =
PSPACE

Theorem: NPSPACE = PSPACE

Proof: We first show that PSPACE ⊆ NPSPACE. For any language L ∈ PSPACE

there exists a deterministic TM that decides that language in polynomial space.
However, any deterministic TM can be seen as a special case of a non-deterministic TM.
Therefore, L ∈ NPSPACE. It follows that PSPACE ⊆ NPSPACE.

We now show that the converse also holds. Let L ∈ NPSPACE be a language that is
decided by some non-deterministic TM in polynomial space, say L ∈ NSPACE(nj).
Clearly, L ∈ NPSPACE. From Savitch’s Theorem we know that
NSPACE(nj) ⊆ SPACE(nj+2). Therefore, L ∈ SPACE(nj+2). It follows that
L ∈ S

k SPACE(nk) and therefore L ∈ PSPACE. This shows that
NPSPACE ⊆ PSPACE.

Therefore, NPSPACE = PSPACE.�

– p. 7/

A Hierarchy of
Complexity

We can now construct a hierarchy of complexity classes.

Observe that P ⊆ PSPACE. To see this let a machine execute in t(n) ≥ n polynomial
time. But this implies that the machine can use at most t(n) polynomial space (one cell
per computation step).

In a similar argument we have NP ⊆ NPSPACE and from the argument above
NP ⊆ PSPACE.

We already know that P ⊆ NP .

Finally, if we have a f(n) ≥ n polynomial space machine it can be shown that this
machine runs in at most 2O(f(n)) exponential time. Thus, PSPACE ⊆ EXPTIME.

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.a

a It is believed that all the set containments are proper.

– p. 8/

A Hierarchy of
Complexity

– p. 9/

