
Computability Summary 



Recursive Languages 

•  The following are all equivalent: 
– A language B is recursive iff B = L(M) for 

some total TM M. 
– A language B is (Turing) computable iff 

some total TM M computes B. 
– A language B is decidable iff B = L(m) for 

some decision method m. 
– A language is recursive iff it is computable. 
– A language is recursive iff it is decidable. 

Note: ‘iff’ = ‘if and only if’ 



Recursively Enumerable 
Languages 

•  The following are equivalent: 
– A language B is RE iff B=L(M) for some TM M. 
– A language B is recognizable iff B=L(m) for 

some recognition method m. 
– A language is RE iff it is recognizable. 



RE Languages 
•  Lu = {(p,in) |  p is a recognition method and in ∈ L(p)} 

–  We have shown that Lu is not decidable 
–  We can show that it is recognizable, for each (p,in) ∈ Lu we can apply the run 

method: 
    run(p,in) 
which will halt if in ∈ L(p) 

–  This means the property of p-accepts-in is not decidable. 
•  Lh = {(p,in) |  p is a recognition method that halts on in} 

–  We have shown that Lh is not decidable 
–  We can show that it is recognizable, for each (p,in) ∈ Lh we can apply the run 

method: 
    run(p,in) 
which will halt if in ∈ L(p) 

–  This means the property of p-halts-on-in is not decidable. 



Theorem 18.6: Rice’s Theorem 

•  To put it another way: all nontrivial 
properties of the RE languages are 
undecidable 

•  Some examples of languages covered 
by the Rice’s Theorem… 

For all nontrivial properties α, the language 
      {p | p is a recognition method and L(p) has property α} 
is not recursive. 



Rice’s Theorem Examples 

Le =  {p | p is a recognition method and L(p) is empty} 
Lr =  {p | p is a recognition method and L(p) is regular} 

 {p |  p is a recognition method and L(p) is context free} 
 {p |  p is a recognition method and L(p) is recursive} 
 {p |  p is a recognition method and |L(p)| = 1} 
 {p |  p is a recognition method and |L(p)| ≥ 100} 
 {p |  p is a recognition method and hello ∈ L(p) } 
 {p |  p is a recognition method and L(p) = Σ*} 

 



What “Nontrivial” Means 

•  A property is trivial if no RE languages 
have it, or if all RE languages have it 

•  Rice’s theorem does not apply to trivial 
properties such as these: 

 {p |  p is a recognition method and L(p) is RE} 
 {p |  p is a recognition method and L(p) ⊃ Σ*} 



Languages That Are Not RE 

•  We’ve seen examples of nonrecursive 
languages like Lh and Lu 

•  Although not recursive, they are still RE: they 
can be defined using recognition methods 
(but not using decision methods) 

•  Are there languages that are not even RE? 
•  Yes, and they are easy to find… 



Theorem 18.9 

•  Proof is by contradiction 
•  Let L be any language that is RE but not recursive 
•  Assume by way of contradiction that the complement 

of L is also RE 
•  Then both L and its complement have recognition 

methods; call them lrec and lbar 
•  We can use them to implement a decision method for 

L… 

If a language is RE but not recursive, 
its complement is not RE. 



Theorem 18.9, Continued 

•  For some j, one of the two runLimited calls must 
return true 

•  So this is a decision method for L 
•  This is a contradiction; L is not recursive 
•  By contradiction, the complement of L is not RE 

If a language is RE but not recursive, 
its complement is not RE. 

boolean ldec(String s) { 
  for (int j = 1; ; j++) { 
    if (runLimited(lrec,s,j)) return true; 
    if (runLimited(lbar,s,j)) return false; 
  } 
} 



boolean lbar(String s) {return !ldec(s);} 

Closure Properties 
•  So the RE languages are not closed for complement 
•  But the recursive languages are  
•  Given a decision method ldec for L, we can 

construct a decision method for L’s complement: 

•  That approach does not work for nonrecursive RE 
languages 

•  If the recognition method lrec(s) runs forever, !
lrec(s) will too 
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Examples 
•  Lh and Lu  are RE but not recursive 
•  By Theorem 18.9, their complements are not RE: 

•  These languages cannot be defined as L(M) for any 
TM M, or with any Turing-equivalent formalism 



The Big Picture 



Recursive 

•  When a language is recursive, there is an 
effective computational procedure that can 
definitely categorize all strings 
–  Given a positive example it will decide yes 
–  Given a negative example it will decide no 

•  A language that is recursive, a property that is 
decidable, a function that is computable 

•  All these terms refer to total-TM-style 
computations, computations that always halt 



RE But Not Recursive 

•  There is a computational procedure that can 
effectively categorize positive examples: 
–  Given a positive example it will decide yes 
–  Given a negative example it may decide no, or 

may run forever 
•  A property like this is called semi-decidable 
•  Like the property of (p,s) ∈ Lh 

–  If p halts on s, a simulation can answer yes 
–  If not, neither simulation nor any other approach 

can always answer with a definite no 



Not RE 

•  There is no computational procedure for 
categorizing strings that gives a definite yes 
answer on all positive examples 

•  Consider (p,s) ∈ Lh 
•  One kind of positive example would be a 

recognition method p that runs forever on s 
•  But there is no algorithm to identify such pairs 
•  Obviously, you can’t simulate p on s, see if it 

runs forever, and then say yes 


