
Computability Summary

Recursive Languages

•  The following are all equivalent:
– A language B is recursive iff B = L(M) for

some total TM M.
– A language B is (Turing) computable iff

some total TM M computes B.
– A language B is decidable iff B = L(m) for

some decision method m.
– A language is recursive iff it is computable.
– A language is recursive iff it is decidable.

Note: ‘iff’ = ‘if and only if’

Recursively Enumerable
Languages

•  The following are equivalent:
– A language B is RE iff B=L(M) for some TM M.
– A language B is recognizable iff B=L(m) for

some recognition method m.
– A language is RE iff it is recognizable.

RE Languages
•  Lu = {(p,in) | p is a recognition method and in ∈ L(p)}

–  We have shown that Lu is not decidable
–  We can show that it is recognizable, for each (p,in) ∈ Lu we can apply the run

method:
 run(p,in)
which will halt if in ∈ L(p)

–  This means the property of p-accepts-in is not decidable.
•  Lh = {(p,in) | p is a recognition method that halts on in}

–  We have shown that Lh is not decidable
–  We can show that it is recognizable, for each (p,in) ∈ Lh we can apply the run

method:
 run(p,in)
which will halt if in ∈ L(p)

–  This means the property of p-halts-on-in is not decidable.

Theorem 18.6: Rice’s Theorem

•  To put it another way: all nontrivial
properties of the RE languages are
undecidable

•  Some examples of languages covered
by the Rice’s Theorem…

For all nontrivial properties α, the language
 {p | p is a recognition method and L(p) has property α}
is not recursive.

Rice’s Theorem Examples

Le = {p | p is a recognition method and L(p) is empty}
Lr = {p | p is a recognition method and L(p) is regular}

 {p | p is a recognition method and L(p) is context free}
 {p | p is a recognition method and L(p) is recursive}
 {p | p is a recognition method and |L(p)| = 1}
 {p | p is a recognition method and |L(p)| ≥ 100}
 {p | p is a recognition method and hello ∈ L(p) }
 {p | p is a recognition method and L(p) = Σ*}

What “Nontrivial” Means

•  A property is trivial if no RE languages
have it, or if all RE languages have it

•  Rice’s theorem does not apply to trivial
properties such as these:

 {p | p is a recognition method and L(p) is RE}
 {p | p is a recognition method and L(p) ⊃ Σ*}

Languages That Are Not RE

•  We’ve seen examples of nonrecursive
languages like Lh and Lu

•  Although not recursive, they are still RE: they
can be defined using recognition methods
(but not using decision methods)

•  Are there languages that are not even RE?
•  Yes, and they are easy to find…

Theorem 18.9

•  Proof is by contradiction
•  Let L be any language that is RE but not recursive
•  Assume by way of contradiction that the complement

of L is also RE
•  Then both L and its complement have recognition

methods; call them lrec and lbar
•  We can use them to implement a decision method for

L…

If a language is RE but not recursive,
its complement is not RE.

Theorem 18.9, Continued

•  For some j, one of the two runLimited calls must
return true

•  So this is a decision method for L
•  This is a contradiction; L is not recursive
•  By contradiction, the complement of L is not RE

If a language is RE but not recursive,
its complement is not RE.

boolean ldec(String s) {
 for (int j = 1; ; j++) {
 if (runLimited(lrec,s,j)) return true;
 if (runLimited(lbar,s,j)) return false;
 }
}

boolean lbar(String s) {return !ldec(s);}

Closure Properties
•  So the RE languages are not closed for complement
•  But the recursive languages are
•  Given a decision method ldec for L, we can

construct a decision method for L’s complement:

•  That approach does not work for nonrecursive RE
languages

•  If the recognition method lrec(s) runs forever, !
lrec(s) will too

€

Lu

€

Lh

Examples
•  Lh and Lu are RE but not recursive
•  By Theorem 18.9, their complements are not RE:

•  These languages cannot be defined as L(M) for any
TM M, or with any Turing-equivalent formalism

The Big Picture

Recursive

•  When a language is recursive, there is an
effective computational procedure that can
definitely categorize all strings
–  Given a positive example it will decide yes
–  Given a negative example it will decide no

•  A language that is recursive, a property that is
decidable, a function that is computable

•  All these terms refer to total-TM-style
computations, computations that always halt

RE But Not Recursive

•  There is a computational procedure that can
effectively categorize positive examples:
–  Given a positive example it will decide yes
–  Given a negative example it may decide no, or

may run forever
•  A property like this is called semi-decidable
•  Like the property of (p,s) ∈ Lh

–  If p halts on s, a simulation can answer yes
–  If not, neither simulation nor any other approach

can always answer with a definite no

Not RE

•  There is no computational procedure for
categorizing strings that gives a definite yes
answer on all positive examples

•  Consider (p,s) ∈ Lh
•  One kind of positive example would be a

recognition method p that runs forever on s
•  But there is no algorithm to identify such pairs
•  Obviously, you can’t simulate p on s, see if it

runs forever, and then say yes

