
Welcome!

•  CSC445 – Models Of Computation
•  Dr. Lutz Hamel
•  Tyler 251
•  hamel@cs.uri.edu

https://fbeedle.com/content/formal-language-practical-introduction

The Course

•  Text: “Formal Language”, by Adam Book
Webber, Franklin, Beedle & Associates,
2007.

•  Special Features:
–  Course website with lecture notes
–  Online gradebook

Introduction
and

Chapter One: Fundamentals

Why Study Formal Language?
•  Connected...

–  ...to many other branches of knowledge
•  Rigorous...

–  ...mathematics with many open questions at the frontiers
•  Useful...

–  ...with many applications in computer systems, particularly in
programming languages and compilers

•  Accessible...
–  ...no advanced mathematics required

•  Stable...
–  ...the basics have not changed much in the last thirty years

Outline

•  1.1 Alphabets
•  1.2 Strings
•  1.3 Languages

Alphabets

•  An alphabet is any finite set of symbols
–  {0,1}: binary alphabet
–  {0,1,2,3,4,5,6,7,8,9}: decimal alphabet
–  ASCII, Unicode: machine-text alphabets
–  Or just {a,b}: enough for many examples
–  {}: a legal but not usually interesting alphabet

•  We will usually use Σ as the name of the
alphabet we’re considering, as in Σ = {a,b}

Alphabets Uninterpreted

•  Informally, we often describe languages
interpretively
–  “the set of even binary numbers”

•  But our goal is to describe them rigorously,
and that means avoiding intuitive
interpretations
–  “the set of strings of 0s and 1s that end in 0”

•  We don’t further define what a symbol is, and
we don’t ascribe meaning to symbols

Outline

•  1.1 Alphabets
•  1.2 Strings
•  1.3 Languages

Strings

•  A string is a finite sequence of zero or
more symbols

•  Length of a string: |abbb| = 4
•  A string over the alphabet Σ means

a string all of whose symbols are in Σ
– The set of all strings of length 2 over the

alphabet {a,b} is {aa, ab, ba, bb}

Empty String

•  The empty string is written as ε
•  Like "" in some programming

languages
•  |ε| = 0
•  Don't confuse empty set and empty

string:
–  {} ≠ ε
–  {} ≠ {ε}

Symbols And Variables
•  Sometimes we will use variables that stand for

strings: x = abbb
•  In programming languages, syntax helps distinguish

symbols from variables
–  String x = "abbb";

•  In formal language, we rely on context and naming
conventions to tell them apart

•  We'll use the first letters, like a, b, and c, as symbols
•  The last few, like x, y, and z, will be string variables

Concatenation

•  The concatenation of two strings x and
y is the string containing all the symbols
of x in order, followed by all the symbols
of y in order

•  We show concatenation just by writing
the strings next to each other

•  If x = abc and y = def, then xy = abcdef
•  For any x, εx = xε = x

Numbers

•  We use N to denote the set of natural
numbers: N = {0, 1, …}

Exponents
•  Exponent n concatenates a string with itself n

times
–  If x = ab, then

•  x0 = ε
•  x1 = x = ab
•  x2 = xx = abab, etc.

–  We use parentheses for grouping exponentiations
(assuming that Σ does not contain the
parentheses)

•  (ab)7 = ababababababab

Outline

•  1.1 Alphabets
•  1.2 Strings
•  1.3 Languages

Languages

•  A language is a set of strings over some fixed
alphabet

•  Not restricted to finite sets: in fact, finite sets
are not usually interesting languages

•  All our alphabets are finite, and all our strings
are finite, but most of the languages we're
interested in are infinite

Kleene Star

•  The Kleene closure of an alphabet Σ, written
as Σ*, is the language of all strings over Σ
–  {a}* is the set of all strings of zero or more as:

{ε, a, aa, aaa, …}
–  {a,b}* is the set of all strings of zero or more

symbols, each of which is either a or b
= {ε, a, b, aa, bb, ab, ba, aaa, …}

–  x ∈ Σ* means x is a string over Σ

•  Unless Σ = {}, Σ* is infinite
•  If Σ = {} then what is Σ*?

Set Formers
•  A set written with extra constraints or

conditions limiting the elements of the set:

{x ∈ {a, b}* | |x| ≤ 2} = {ε, a, b, aa, bb, ab, ba}

{xy | x ∈ {a, aa} and y ∈ {b, bb}} = {ab, abb, aab, aabb}

{x ∈ {a, b}* | x contains one a and two bs} = {abb, bab, bba}

{anbn | n ≥ 1} = {ab, aabb, aaabbb, aaaabbbb, ...}

The Quest

•  Using set formers to describe complex
languages is challenging

•  They can often be vague, ambiguous,
or self-contradictory

•  A big part of our quest in the study of
formal language is to develop better
tools for defining and classifying
languages

