Welcome!

- CSC445 Models Of Computation
- Dr. Lutz Hamel
- Tyler 251
- hamel@cs.uri.edu

The Course

- Text: "Formal Language", by Adam Book Webber, Franklin, Beedle & Associates, 2007.
- Special Features:
 - Course website with lecture notes
 - Online gradebook

Introduction and Chapter One: Fundamentals

Why Study Formal Language?

- Connected...
 - ...to many other branches of knowledge
- Rigorous...
 - ...mathematics with many open questions at the frontiers
- Useful...
 - ...with many applications in computer systems, particularly in programming languages and compilers
- Accessible...
 - ...no advanced mathematics required
- Stable...

- ...the basics have not changed much in the last thirty years

Outline

- 1.1 Alphabets
- 1.2 Strings
- 1.3 Languages

Alphabets

- An *alphabet* is any finite set of symbols
 - {0,1}: binary alphabet
 - {0,1,2,3,4,5,6,7,8,9}: decimal alphabet
 - ASCII, Unicode: machine-text alphabets
 - Or just {a,b}: enough for many examples
 - {}: a legal but not usually interesting alphabet
- We will usually use Σ as the name of the alphabet we're considering, as in Σ = {a,b}

Alphabets Uninterpreted

- Informally, we often describe languages interpretively
 - "the set of even binary numbers"
- But our goal is to describe them rigorously, and that means avoiding intuitive interpretations
 - "the set of strings of 0s and 1s that end in 0"
- We don't further define what a symbol is, and we don't ascribe meaning to symbols

Outline

- 1.1 Alphabets
- 1.2 Strings
- 1.3 Languages

Strings

- A *string* is a finite sequence of zero or more symbols
- Length of a string: |*abbb*| = 4
- A string over the alphabet Σ means a string all of whose symbols are in Σ

The set of all strings of length 2 over the alphabet {a,b} is {aa, ab, ba, bb}

Empty String

- The empty string is written as $\boldsymbol{\epsilon}$
- Like "" in some programming languages
- $|\varepsilon| = 0$
- Don't confuse empty set and empty string:

$$-\{\} \neq \varepsilon \\ -\{\} \neq \{\varepsilon\}$$

Symbols And Variables

- Sometimes we will use variables that stand for strings: x = abbb
- In programming languages, syntax helps distinguish symbols from variables

- String x = "abbb";

- In formal language, we rely on context and naming conventions to tell them apart
- We'll use the first letters, like *a*, *b*, and *c*, as symbols
- The last few, like *x*, *y*, and *z*, will be string variables

Concatenation

- The concatenation of two strings x and y is the string containing all the symbols of x in order, followed by all the symbols of y in order
- We show concatenation just by writing the strings next to each other
- If x = abc and y = def, then xy = abcdef
- For any x, $\varepsilon x = x\varepsilon = x$

Numbers

We use N to denote the set of natural numbers: N = {0, 1, ...}

Exponents

- Exponent n concatenates a string with itself n times
 - If x = ab, then
 - $x^0 = \varepsilon$
 - $x^1 = x = ab$
 - $x^2 = xx = abab$, etc.
 - We use parentheses for grouping exponentiations (assuming that Σ does not contain the parentheses)
 - $(ab)^7 = ababababababab$

Outline

- 1.1 Alphabets
- 1.2 Strings
- 1.3 Languages

Languages

- A *language* is a set of strings over some fixed alphabet
- Not restricted to finite sets: in fact, finite sets are not usually interesting languages
- All our alphabets are finite, and all our strings are finite, but most of the languages we're interested in are infinite

Kleene Star

- The Kleene closure of an alphabet Σ , written as Σ^* , is the language of all strings over Σ
 - {a}* is the set of all strings of zero or more as:
 {ε, a, aa, aaa, ...}
 - {a,b}* is the set of all strings of zero or more symbols, each of which is either a or b
 = {ε, a, b, aa, bb, ab, ba, aaa, ...}
 - $x \in \Sigma^*$ means x is a string over Σ
- Unless $\Sigma = \{\}, \Sigma^*$ is infinite
- If $\Sigma = \{\}$ then what is Σ^* ?

Set Formers

• A set written with extra constraints or conditions limiting the elements of the set:

 ${x \in {a, b}^* | |x| \le 2} = {\varepsilon, a, b, aa, bb, ab, ba}$

 $\{xy \mid x \in \{a, aa\} \text{ and } y \in \{b, bb\}\} = \{ab, abb, aab, aabb\}$

 ${x \in {a, b}^* | x \text{ contains one } a \text{ and two } bs} = {abb, bab, bba}$

 $\{a^nb^n \mid n \ge 1\} = \{ab, aabb, aaabbb, aaaabbbb, ...\}$

The Quest

- Using set formers to describe complex languages is challenging
- They can often be vague, ambiguous, or self-contradictory
- A big part of our quest in the study of formal language is to develop better tools for defining and classifying languages