
Chapter Two:
Finite Automata

In theoretical computer science, automata theory is the study of abstract machines (or more appropriately,
abstract 'mathematical' machines or systems) and the computational problems that can be solved using
these machines. These abstract machines are called automata. Automata comes from the
Greek word αὐτόματα meaning "self-acting".
 - Wikipedia

Finite Automata

•  One way to define a language is to construct
an automaton
–  a kind of abstract computer that takes a string as

input and produces a yes-or-no answer.
•  The language it defines is the set of all strings

for which it says yes.

Finite Automata

•  The simplest kind of automaton is the finite
automaton.

•  The more complicated automata we discuss later
have some kind of unbounded memory to work with;
in effect, they will be able to grow to whatever size
necessary to handle the input string they are given.

•  finite automata have no such power.
–  A finite automaton has a finite memory that is fixed in

advance.
–  Whether the input string is long or short, complex or simple,

the finite automaton must reach its decision using the same
fixed and finite memory.

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

A Classic Riddle

•  A man travels with wolf, goat and cabbage
•  Wants to cross a river from east (E) to west

(W)
•  A rowboat is available, but only large enough

for the man plus one possession
•  Wolf eats goat if left alone together
•  Goat eats cabbage if left alone together
•  How can the man cross without loss?

Solutions As Strings

•  Four moves can be encoded as four symbols:
–  Man crosses with wolf (w)
–  Man crosses with goat (g)
–  Man crosses with cabbage (c)
–  Man crosses with nothing (n)

•  Then a sequence of moves is a string, such
as the solution gnwgcng:
–  First cross with goat, then cross back with nothing,

then cross with wolf, …

Moves As State Transitions

•  Each move takes our puzzle universe from one state
to another - a state is the configuration of occupants
on each side of the river.

•  For example, the g move is a transition between
these two states:

Transition Diagram
•  Showing all legal moves
•  All reachable states
•  Start state and goal state

The Language Of Solutions

•  Every path gives some x ∈ {w,g,c,n}*
•  The diagram defines the language of solutions to the

problem:

{x ∈ {w,g,c,n}* | starting in the start state and following the transitions of x ends up in the goal state}

•  Recall: A language is the set of all strings for which an
automaton says yes (ends up in the goal state).

•  This is an infinite language (why?)
•  The two shortest strings (solutions) in the language are

gnwgcng and gncgwng

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

What happens if we try a string
that is not in the language?

Consider gnwn…we get stuck
with nowhere to go.

Diagram Gets Stuck

•  On many strings that are not solutions, the
previous diagram gets stuck

•  Automata that never get stuck are easier to
work with

•  We'll need one additional state to use when
an error has been found in a solution

Complete Specification

•  The diagram shows exactly one transition
from every state on every symbol in Σ

•  It gives a computational procedure for
deciding whether a given string is a solution:
–  Start in the start state
–  Make one transition for each symbol in the string
–  If you end in the goal state, accept; if not, reject

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

DFA:
Deterministic Finite Automaton

•  An informal definition (formal version later):
–  A diagram with a finite number of states

represented by circles
–  An arrow points to one of the states, the unique

start state
–  Double circles mark any number of the states as

accepting states
–  For every state, for every symbol in Σ, there is

exactly one arrow labeled with that symbol going
to another state (or back to the same state)

DFAs Define Languages

•  Given any string over Σ, a DFA can read the
string and follow its state-to-state transitions

•  At the end of the string, if it is in an accepting
state, we say it accepts the string

•  Otherwise it rejects
•  The language defined by a DFA is the set of

strings in Σ* that it accepts

Example

•  This DFA defines {xa | x ∈ {a,b}*}
•  No labels on states (unlike man-wolf-goat-cabbage)
•  Labels can be added, but they have no effect, like

program comments:

last
symbol

seen was
not a

last
symbol

seen was a

b

a

a

b

Consider the Strings:
- aba
- bab

A DFA Convention

•  We don't draw multiple arrows with the same
source and destination states:

•  Instead, we draw one arrow with a list of
symbols:

a

b

a, b

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

The 5-Tuple (Formal Definition)

•  Q is the set of states
–  Drawn as circles in the diagram
–  We often refer to individual states as qi
–  The definition requires at least one: q0, the start state

•  F is the set of all those in Q that are accepting states
–  Drawn as double circles in the diagram

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where:
 Q is the finite set of states
 Σ is the alphabet (that is, a finite set of symbols)
 δ ∈ (Q × Σ → Q) is the transition function
 q0 ∈ Q is the start state
 F ⊆ Q is the set of accepting states

The 5-Tuple (Formal Definition)

•  δ is the transition function
–  A function δ(q,a) that takes the current state q and next input

symbol a, and returns the next state
–  Represents the same information as the arrows in the

diagram

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where:
 Q is the finite set of states
 Σ is the alphabet (that is, a finite set of symbols)
 δ ∈ (Q × Σ → Q) is the transition function
 q0 ∈ Q is the start state
 F ⊆ Q is the set of accepting states

Example:

•  This DFA defines {xa | x ∈ {a,b}*}
•  Formally, M = (Q, Σ, δ, q0, F), where

–  Q = {q0,q1}
–  Σ = {a,b}
–  F = {q1}
–  δ(q0,a) = q1, δ(q0,b) = q0, δ(q1,a) = q1, δ(q1,b) = q0

•  Names are conventional, but the order is what counts
in a tuple

•  We could just say M = ({q0,q1}, {a,b}, δ, q0, {q1})

q0 q1

b

a

a

b

Another DFA

•  What is the alphabet?
•  Informally describe the

language of this DFA
•  Write down the formal

definition of this DFA.

More DFAs

For each of these DFAs:
•  What is the alphabet?
•  Informally describe the

language of this DFA
•  Write down the formal

definition of this DFA.

a)

b)

Languages

•  For each of the following languages construct a
DFA that recognizes it:
–  {x ∈ {a, b}* | |x| ≤ 2}
–  {x ∈ {a, b}* | x is a string with 0 or more a’s followed by 0 or more b’s}
–  {x ∈ {a, b}* | x contains one a and two bs}

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

The δ* Function

•  The δ function gives 1-symbol moves
•  We'll define δ* so it gives whole-string results (by applying zero

or more δ moves)
•  A recursive definition:

–  δ*(q,ε) = q
–  δ*(q,xa) = δ(δ*(q,x),a)

•  That is:
–  For the empty string, no moves
–  For any string xa (x is any string and a is any final symbol) first

make the moves on x, then one final move on a

M Accepts x

•  Now δ*(q,x) is the state M ends up in, starting
from state q and reading all of string x

•  So δ*(q0,x) tells us whether M accepts x:

A string x ∈ Σ* is accepted by a DFA M = (Q, Σ, δ, q0, F)
if and only if δ*(q0, x) ∈ F.

A regular language is one that is L(M) for some
DFA M.

For any DFA M = (Q, Σ, δ, q0, F), L(M) denotes
the language accepted by M, which is
L(M) = {x ∈ Σ* | δ*(q0, x) ∈ F}.

Regular Languages

•  To show that a language is regular, give a DFA for it; we'll see
additional ways later

•  To show that a language is not regular we have to show that it is
not possible to construct a DFA for it (this is typically much more
difficult - we'll see a proof technique for this later)

Are these Languages Regular?

•  {(ab)n | n > 0}
•  {ambn | m,n > 0}
•  {anbn | n > 0}

Assignment #1

•  See course website

