Chapter Two: Finite Automata

In <u>theoretical computer science</u>, **automata theory** is the study of <u>abstract machines</u> (or more appropriately, abstract <u>mathematical</u> machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. Automata comes from the Greek word αὐτόματα meaning "self-acting".

Finite Automata

- One way to define a language is to construct an *automaton*
 - a kind of abstract computer that takes a string as input and produces a yes-or-no answer.
- The language it defines is the set of all strings for which it says yes.

Finite Automata

- The simplest kind of automaton is the *finite* automaton.
- The more complicated automata we discuss later have some kind of *unbounded* memory to work with; in effect, they will be able to grow to whatever size necessary to handle the input string they are given.
- finite automata have no such power.
 - A finite automaton has a finite memory that is fixed in advance.
 - Whether the input string is long or short, complex or simple, the finite automaton must reach its decision using the same fixed and finite memory.

Outline

- 2.1 Man Wolf Goat Cabbage
- 2.2 Not Getting Stuck
- 2.3 Deterministic Finite Automata
- 2.4 The 5-Tuple
- 2.5 The Language Accepted by a DFA

A Classic Riddle

- A man travels with wolf, goat and cabbage
- Wants to cross a river from east (E) to west
 (W)
- A rowboat is available, but only large enough for the man plus one possession
- Wolf eats goat if left alone together
- Goat eats cabbage if left alone together
- How can the man cross without loss?

Solutions As Strings

- Four moves can be encoded as four symbols:
 - Man crosses with wolf (w)
 - Man crosses with goat (g)
 - Man crosses with cabbage (c)
 - Man crosses with nothing (*n*)
- Then a sequence of moves is a string, such as the solution *gnwgcng*:
 - First cross with goat, then cross back with nothing, then cross with wolf, ...

Moves As State Transitions

- Each move takes our puzzle universe from one state to another a state is the configuration of occupants on each side of the river.
- For example, the *g* move is a transition between these two states:

The Language Of Solutions

- Every path gives some $x \in \{w, g, c, n\}^*$
- The diagram defines the language of solutions to the problem:

 $\{x \in \{w, g, c, n\}^* \mid \text{ starting in the start state and following the transitions of } x \text{ ends up in the goal state}\}$

- Recall: A language is the set of all strings for which an automaton says yes (ends up in the goal state).
- This is an infinite language (why?)
- The two shortest strings (solutions) in the language are *gnwgcng* and *gncgwng*

Outline

- 2.1 Man Wolf Goat Cabbage
- 2.2 Not Getting Stuck
- 2.3 Deterministic Finite Automata
- 2.4 The 5-Tuple
- 2.5 The Language Accepted by a DFA

Diagram Gets Stuck

- On many strings that are not solutions, the previous diagram gets stuck
- Automata that never get stuck are easier to work with
- We'll need one additional state to use when an error has been found in a solution

Complete Specification

- The diagram shows exactly one transition from every state on every symbol in $\boldsymbol{\Sigma}$
- It gives a computational procedure for deciding whether a given string is a solution:
 - Start in the start state
 - Make one transition for each symbol in the string
 - If you end in the goal state, accept; if not, reject

Outline

- 2.1 Man Wolf Goat Cabbage
- 2.2 Not Getting Stuck
- 2.3 Deterministic Finite Automata
- 2.4 The 5-Tuple
- 2.5 The Language Accepted by a DFA

DFA:

Deterministic Finite Automaton

- An informal definition (formal version later):
 - A diagram with a finite number of states represented by circles
 - An arrow points to one of the states, the unique start state
 - Double circles mark any number of the states as accepting states
 - For every state, for every symbol in Σ , there is exactly one arrow labeled with that symbol going to another state (or back to the same state)

DFAs Define Languages

- Given any string over Σ , a DFA can read the string and follow its state-to-state transitions
- At the end of the string, if it is in an accepting state, we say it accepts the string
- Otherwise it rejects
- The language defined by a DFA is the set of strings in Σ* that it accepts

Example

Consider the Strings: -aba -bab

- This DFA defines $\{xa \mid x \in \{a,b\}^*\}$
- No labels on states (unlike man-wolf-goat-cabbage)
- Labels can be added, but they have no effect, like program comments:

A DFA Convention

• We don't draw multiple arrows with the same source and destination states:

Instead, we draw one arrow with a list of symbols:

$$\bigcirc \xrightarrow{a, b} \bigcirc$$

Outline

- 2.1 Man Wolf Goat Cabbage
- 2.2 Not Getting Stuck
- 2.3 Deterministic Finite Automata
- 2.4 The 5-Tuple
- 2.5 The Language Accepted by a DFA

The 5-Tuple (Formal Definition)

A DFA *M* is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where: *Q* is the finite set of states Σ is the alphabet (that is, a finite set of symbols) $\delta \in (Q \times \Sigma \rightarrow Q)$ is the transition function $q_0 \in Q$ is the start state $F \subseteq Q$ is the set of accepting states

- Q is the set of states
 - Drawn as circles in the diagram
 - We often refer to individual states as q_i
 - The definition requires at least one: q_0 , the start state
- *F* is the set of all those in *Q* that are accepting states
 - Drawn as double circles in the diagram

The 5-Tuple (Formal Definition)

A DFA *M* is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where: *Q* is the finite set of states Σ is the alphabet (that is, a finite set of symbols) $\delta \in (Q \times \Sigma \rightarrow Q)$ is the transition function $q_0 \in Q$ is the start state $F \subseteq Q$ is the set of accepting states

- δ is the transition function
 - A function $\delta(q,a)$ that takes the current state q and next input symbol a, and returns the next state
 - Represents the same information as the arrows in the diagram

- This DFA defines $\{xa \mid x \in \{a,b\}^*\}$
- Formally, $M = (Q, \Sigma, \delta, q_0, F)$, where
 - $Q = \{q_0, q_1\}$
 - $-\Sigma = \{a,b\}$
 - $F = \{q_1\}$
 - $\delta(q_0, a) = q_1, \, \delta(q_0, b) = q_0, \, \delta(q_1, a) = q_1, \, \delta(q_1, b) = q_0$
- Names are conventional, but the order is what counts in a tuple
- We could just say $M = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$

Another DFA

- What is the alphabet?
- Informally describe the language of this DFA
- Write down the formal definition of this DFA.

More DFAs

b)

For each of these DFAs:

- What is the alphabet?
- Informally describe the language of this DFA
- Write down the formal definition of this DFA.

Languages

- For each of the following languages construct a DFA that recognizes it:
 - $\{x \in \{a, b\}^* \mid |x| \le 2\}$
 - $\{x \in \{a, b\}^* \mid x \text{ is a string with 0 or more } a's \text{ followed by 0 or more } b's\}$
 - { $x \in \{a, b\}^*$ | x contains one a and two bs}

Outline

- 2.1 Man Wolf Goat Cabbage
- 2.2 Not Getting Stuck
- 2.3 Deterministic Finite Automata
- 2.4 The 5-Tuple
- 2.5 The Language Accepted by a DFA

The δ^* Function

- The δ function gives 1-symbol moves
- We'll define δ^* so it gives whole-string results (by applying zero or more δ moves)
- A recursive definition:
 - $\ \delta^*(q, \varepsilon) = q$
 - $\delta^*(q, xa) = \delta(\delta^*(q, x), a)$
- That is:
 - For the empty string, no moves
 - For any string *xa* (*x* is any string and *a* is any final symbol) first make the moves on *x*, then one final move on *a*

M Accepts x

- Now δ*(q,x) is the state M ends up in, starting from state q and reading all of string x
- So $\delta^*(q_0, x)$ tells us whether *M* accepts *x*:

A string $x \in \Sigma^*$ is accepted by a DFA $M = (Q, \Sigma, \delta, q_0, F)$ if and only if $\delta^*(q_0, x) \in F$.

Regular Languages

For any DFA $M = (Q, \Sigma, \delta, q_0, F)$, L(M) denotes the language accepted by M, which is $L(M) = \{x \in \Sigma^* \mid \delta^*(q_0, x) \in F\}.$

A *regular language* is one that is *L*(*M*) for some DFA *M*.

- To show that a language is regular, give a DFA for it; we'll see additional ways later
- To show that a language is *not* regular we have to show that it is not possible to construct a DFA for it (this is typically much more difficult - we'll see a proof technique for this later)

Are these Languages Regular?

- $\{(ab)^n \mid n > 0\}$
- $\{a^m b^n \mid m, n > 0\}$
- $\{a^n b^n \mid n > 0\}$

Assignment #1

• See course website