Chapter Three:
Closure Properties
for
Regular Languages

Closure Properties

- Once we have defined languages formally, we can consider combinations and modifications of those languages:
 - unions, intersections, complements, and so on.
- Such combinations and modifications raise important questions.
 - For example, is the intersection of two regular languages also regular—capable of being recognized directly by some DFA?

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction

Language Complement

 For any language L over an alphabet Σ, the complement of L is

$$\overline{L} = \left\{ x \in \Sigma^* \mid x \notin L \right\}$$

• Example:

$$L = \left\{0x \mid x \in \left\{0,1\right\}^{*}\right\} = \text{ strings that start with } 0$$

$$\bar{L} = \left\{1x \mid x \in \left\{0,1\right\}^{*}\right\} \cup \left\{\varepsilon\right\} = \text{ strings that } don't \text{ start with } 0$$

 Given a DFA for any language, it is easy to construct a DFA for its complement

Example

$$L = \left\{0x \mid x \in \left\{0,1\right\}^*\right\}$$

Reverse Accepting and Non-Accepting States!

$$\bar{L} = \left\{ 1x \mid x \in \left\{0,1\right\}^* \right\} \cup \left\{\varepsilon\right\}$$

Complementing a DFA

- All we did was to make the accepting states be non-accepting, and make the nonaccepting states be accepting
- In terms of the 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, all we did was to replace F with Q-F
- Using this construction, we have a proof that the complement of any regular language is another regular language

Theorem 3.1

The complement of any regular language is a regular language.

- Let L be any regular language
- By definition there must be some DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L
- Define a new DFA $M' = (Q, \Sigma, \delta, q_0, Q-F)$
- This has the same transition function δ as M, but for any string $x \in \Sigma^*$ it accepts x if and only if M rejects x
- Thus L(M') is the complement of L
- Because there is a DFA for it, we conclude that the complement of L is regular

Closure Properties

- A shorter way of saying that theorem: the regular languages are closed under complement
- The complement operation cannot take us out of the class of regular languages
- Closure properties are useful shortcuts: they let you conclude a language is regular without actually constructing a DFA for it

Proofs using the Complement

Show that the following language is regular:

$$L = \left\{ x \in \left\{ a, b \right\}^* \mid x \text{ does not contain the string } abb \right\}$$

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction

Language Intersection

- $L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2\}$
- Example:
 - $-L_1 = \{0x \mid x \in \{0,1\}^*\} = \text{strings that start with } 0$
 - $-L_2 = \{x0 \mid x \in \{0,1\}^*\} = \text{strings that end with } 0$
 - $-L_1 \cap L_2 = \{x \in \{0,1\}^* \mid x \text{ starts and ends with } 0\}$
- Usually we will consider intersections of languages with the same alphabet, but it works either way
- Given two DFAs, it is possible to construct a DFA for the intersection of the two languages

Two DFAs

$$L_1 = \{0x \mid x \in \{0,1\}^*\}$$

$$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$$

$$L_1 = L(M_1)$$

$$L_2 = \{x0 \mid x \in \{0,1\}^*\}$$

$$M_2 = (R, \Sigma, \delta_2, r_0, F_2)$$

$$L_2 = L(M_2)$$

- We'll make a DFA that keeps track of the pair of states (q_i, r_j) the two original DFAs are in
- Initially, they are both in their start states:

• Working from there, we keep track of the pair of states (q_i, r_i) :

• Eventually state-pairs repeat; then we're almost done:

• For intersection, both original DFAs must accept:

Cartesian Product

- In that construction, the states of the new DFA are pairs of states from the two originals
- That is, the state set of the new DFA is the Cartesian product of the two original sets:

$$Q \times R = \{(q,r) \mid q \in Q \text{ and } r \in R\}$$

 The construct we just saw is called the product construction

Theorem 3.2

If L_1 and L_2 are any regular languages, $L_1 \cap L_2$ is also a regular language.

- Let L_1 and L_2 be any regular languages
- By definition there must be DFAs for them:
 - $-M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$ with $L(M_1) = L_1$
 - $-M_2 = (R, \Sigma, \delta_2, r_0, F_2)$ with $L(M_2) = L_2$
- Define a new DFA $M_3 = (Q \times R, \Sigma, \delta, (q_0, r_0), F_1 \times F_2)$
- For δ , define it so that for all $q \in Q$, $r \in R$, and $a \in \Sigma$, we have $\delta((q,r),a) = (\delta_1(q,a), \delta_2(r,a))$
- M_3 accepts if and only if both M_1 and M_2 accept
- So $L(M_3) = L_1 \cap L_2$, so that intersection is regular

Notes

- Formal construction assumed that the alphabets were the same
 - It can easily be modified for differing alphabets
 - The alphabet for the new DFA would be $\Sigma_1 \cap \Sigma_2$
- Formal construction generated all pairs
 - When we did it by hand, we generated only those pairs actually reachable from the start pair
 - Makes no difference for the language accepted
 - The formal construction will just have a bunch of unreachable states in its set of states that have no impact on the language accepted by the machine.
- The new DFA runs both of the constituent DFAs simultaneously and accepts if and only if both DFAs accept.

Proofs using the Intersection

Show that the following language is regular:

$$L = \left\{ x \in \left\{ a, b \right\}^* \mid x \text{ contains both the strings } abb \text{ and } bba \right\}$$

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction

Language Union

- $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2 \text{ (or both)}\}\$
- Example:
 - $L_1 = \{0x \mid x \in \{0,1\}^*\} = \text{strings that start with } 0$
 - L_2 = {x0 | x ∈ {0,1}*} = strings that end with 0
 - L_1 ∪ L_2 = {x ∈ {0,1}* | x starts with 0 or ends with 0 (or both)}
- Usually we will consider unions of languages with the same alphabet, but it works either way

Two DFAs

$$L_1 = \{0x \mid x \in \{0,1\}^*\}$$

$$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$$

$$L_1 = L(M_1)$$

$$L_2 = \{x0 \mid x \in \{0,1\}^*\}$$

$$M_2 = (R, \Sigma, \delta_2, r_0, F_2)$$

$$L_2 = L(M_2)$$

Theorem 3.3

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

- Proof 1: using DeMorgan's laws
 - Because the regular languages are closed for intersection and complement, we know they must also be closed for union:

$$L_1 \cup L_2 = \overline{L_1 \cap L_2}$$

Theorem 3.3

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

- Proof 2: by product construction
 - Same as for intersection, but with different accepting states
 - Accept where either (or both) of the original DFAs accept
 - Accepting state set is $(F_1 \times R) \cup (Q \times F_2)$
 - Define a new DFA:

$$M_3 = (Q \times R, \Sigma, \delta, (q_0, r_0), (F_1 \times R) \cup (Q \times F_2))$$

• For union, at least one original DFA must accept:

Proofs using the Union

Show that the following language is regular:

$$L = \{x \in \{a,b\}^* \mid x \text{ contains either the string } abb \text{ or } bba \text{ or both}\}$$

Assignment

Assignment #2 – see website