
Chapter Five: 
Nondeterministic Finite Automata 



From DFA to NFA 

•  A DFA has exactly one transition from every state on 
every symbol in the alphabet.   

•  By relaxing this requirement we get a related but 
more flexible kind of automaton: the nondeterministic 
finite automaton or NFA. 
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Not A DFA 

•  Does not have exactly one transition from 
every state on every symbol: 
–  Two transitions from q0 on a 
–  No transition from q1 (on either a or b) 

•  Though not a DFA, this can be taken as 
defining a language, in a slightly different way 
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Possible Sequences of Moves 

•  We'll consider all possible sequences of moves the machine 
might make for a given string 

•  For example, on the string aa there are three: 
–  From q0 to q0 to q0, rejecting 
–  From q0 to q0 to q1, accepting 
–  From q0 to q1, getting stuck on the last a 

•  Our convention for this new kind of machine: a string is in L(M) if 
there is at least one accepting sequence 
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Nondeterministic Finite 
Automaton (NFA) 

•  L(M) = the set of strings that have at least one accepting 
sequence 

•  In the example above, L(M) = {xa | x ∈ {a,b}*} 
•  A DFA is a special case of an NFA: 

–  An NFA that happens to be deterministic: there is exactly one 
transition from every state on every symbol 

–  So there is exactly one possible sequence for every string 
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Nondeterminism 

•  The essence of nondeterminism: 
–  For a given input there can be more than one legal 

sequence of steps 
–  The input is in the language if at least one of the legal 

sequences says so 
•  We can achieve the same result by computing all 

legal sequences in parallel and then deterministically 
search the legal sequences that accept the input, 
but…  

•  ...this nondeterminism does not directly correspond to 
anything in physical computer systems 

•  In spite of that, NFAs have many practical 
applications 



NFA Example 

•  This NFA accepts only 
those strings that end in 
01 

•  Running in “parallel 
threads” for string 
1100101 
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Nondeterminism DFA: 
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Now consider string: 0110 



DFAs and NFAs 

•  DFAs and NFAs both define languages 
•  DFAs do it by giving a simple computational procedure for 

deciding language membership: 
–  Start in the start state 
–  Make one transition on each symbol in the string 
–  See if the final state is accepting 

•  NFAs do it by considering all possible transitions in parallel. 



NFA Advantage 
•  An NFA for a language can be smaller and easier to construct than a 

DFA 
•  Let L={x ∈ {0,1}*|where x is a string whose next-to-last symbol is 1} 
•  Construct both a DFA and NFA for recognizing L. 
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Spontaneous Transitions 

•  An NFA can make a state transition 
spontaneously, without consuming an input 
symbol 

•  Shown as an arrow labeled with ε 
•  For example, {a}* ∪ {b}*: 
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ε-Transitions To Accepting States 

•  An ε-transition can be made at any time 
•  For example, there are three sequences on the empty string 

–  No moves, ending in q0, rejecting 
–  From q0 to q1, accepting 
–  From q0 to q2, accepting 

•  Any state with an ε-transition to an accepting state ends up 
working like an accepting state too 
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ε-transitions For NFA Combining 

•  ε-transitions are useful for combining smaller 
automata into larger ones 

•  This machine is combines a machine for {a}* 
and a machine for {b}* 

•  It uses an ε-transition at the start to achieve 
the union of the two languages 
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Revisiting Union 
A = {an |  n is odd} 

B = {bn |  n is odd} 

A ∪ B  
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Concatenation 
A = {an |  n is odd} 

B = {bn |  n is odd} 

{xy |  x ∈ A and y ∈ B} 
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Some Exercises 
What is the language accepted by the following NFAs? 

a) b) 

c) 



•  Let Σ = {a, b, c}. Give an NFA M that accepts: 

  L = {x | x is in Σ* and x contains ab} 
 
 
 
 
 
 
 

More Exercises 



•  Let Σ = {a, b}. Give an NFA M that accepts: 

  L = {x | x is in Σ* and the third to the last symbol in x is b} 
 
 
 
 
 
 
 

One More Exercise 



NFA Exercise 

•  Construct an NFA that will accept strings over 
alphabet {1, 2, 3} such that the last symbol appears 
at least twice, but without any intervening higher 
symbol, in between: 
–  e.g., 11, 2112, 123113, 3212113, etc. 

•  Trick: use start state to mean “I guess I haven't seen 
the symbol that matches the ending symbol yet.”  
Use three other states to represent a guess that the 
matching symbol has been seen, and remembers 
what that symbol is. 

•  Spoiler Alert: answer on the next slide! 



NFA Exercise (answer) 
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Powerset 

•  If S is a set, the powerset of S is the set of all subsets of S: 
 

 P(S) = {R | R ⊆ S} 
 

•  This always includes the empty set and S itself 
•  For example, 

  
P({1,2,3}) = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} 



The 5-Tuple 

•  The only change from a DFA is the transition function δ 
•  δ takes two inputs: 

–  A state from Q (the current state) 
–  A symbol from Σ∪{ε}  (the next input, or ε for an ε-transition) 

•  δ produces one output: 
–  A subset of Q (the set of possible next states - since multiple transitions can 

happen in parallel!) 

An NFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where: 
 Q is the finite set of states 
 Σ is the alphabet (that is, a finite set of symbols) 
 δ ∈ (Q × (Σ∪{ε}) → P(Q) is the transition function 
 q0 ∈ Q is the start state 
 F ⊆ Q is the set of accepting states 



Example: 

•  Formally, M = (Q, Σ, δ, q0, F), where 
–  Q = {q0,q1,q2} 
–  Σ = {a,b}  (we assume: it must contain at least a and b) 
–  F = {q2} 
–  δ(q0,a) = {q0,q1}, δ(q0,b) = {q0}, δ(q0,ε) = {q2},  
δ(q1,a) = {}, δ(q1,b) = {q2}, δ(q1,ε) = {} 
δ(q2,a) = {}, δ(q2,b) = {}, δ(q2,ε) = {} 

•  The language defined is {a,b}* 
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The δ* Function 

•  The δ function gives 1-symbol moves 
•  We'll define δ* so it gives whole-string results 

(by applying zero or more δ moves) 
•  For DFAs, we used this recursive definition 

–  δ*(q,ε) = q 
–  δ*(q,xa) = δ(δ*(q,x),a) 

•  The intuition is similar for NFAs taking parallel 
transitions into account, but the  
ε-transitions add some technical difficulties 



NFA IDs 

•  An instantaneous description (ID) is a 
description of a point in an NFA's execution 

•  It is a pair (q,x) where 
–  q ∈ Q is the current state 
–  x ∈ Σ* is the unread part of the input 

•  Initially, an NFA processing a string x has the 
ID (q0,x) 

•  An accepting sequence of moves ends in an 
ID (f,ε) for some accepting state f ∈ F 



The One-Move Relation On IDs 

•  We write  
 
if I is an ID and J is an ID that could follow 
from I after one move of the NFA 

•  That is, for any string x ∈ Σ* and any a ∈ Σ  or 
a = ε,  
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I  J

  

€ 

q,ax( ) r,x( ) if and only if r ∈ δ q,a( )



The Zero-Or-More-Move Relation 

•  We write  
 
if there is a sequence of zero or more moves 
that starts with I and ends with J: 
 

•  Because it allows zero moves, it is a reflexive 
relation: for all IDs I,  
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I ∗ J
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I  J
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I∗ I



The δ* Function 

•  Now we can define the δ* 
function for NFAs: 
 
 

•  Intuitively, δ*(q,x) is the set of all 
states the NFA might be in after 
starting in state q and reading x 

  

€ 

δ∗ q,x( ) = r q,x( )∗ r,ε( ){ }



M Accepts x 

•  Now δ*(q,x) is the set of states M may end in, 
starting from state q and reading all of string x 

•  So δ*(q0,x) tells us whether M accepts x by 
computing all possible states by executing all 
possible transitions in parallel on the string x:  

A string x ∈ Σ* is accepted by an NFA M = (Q, Σ, δ, q0, F) 
if and only if the set δ*(q0, x) contains at least one 
element of F. 



For any NFA M = (Q, Σ, δ, q0, F), L(M) denotes 
the language accepted by M, which is  
 

 L(M) = {x ∈ Σ* |  δ*(q0, x) ∩ F ≠ {}}. 

The Language An NFA Defines 



Exercise 

•  Compute the results of 
the following transitions: 
–  δ*(q1,ε) 
–  δ*(q1,0110) 



Assignment 

•  Assignment #3 – see website 


