
Chapter Five:
Nondeterministic Finite Automata

From DFA to NFA

•  A DFA has exactly one transition from every state on
every symbol in the alphabet.

•  By relaxing this requirement we get a related but
more flexible kind of automaton: the nondeterministic
finite automaton or NFA.

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

Not A DFA

•  Does not have exactly one transition from
every state on every symbol:
–  Two transitions from q0 on a
–  No transition from q1 (on either a or b)

•  Though not a DFA, this can be taken as
defining a language, in a slightly different way

q1

a,b

q0
a

Possible Sequences of Moves

•  We'll consider all possible sequences of moves the machine
might make for a given string

•  For example, on the string aa there are three:
–  From q0 to q0 to q0, rejecting
–  From q0 to q0 to q1, accepting
–  From q0 to q1, getting stuck on the last a

•  Our convention for this new kind of machine: a string is in L(M) if
there is at least one accepting sequence

q1

a,b

q0
a

Nondeterministic Finite
Automaton (NFA)

•  L(M) = the set of strings that have at least one accepting
sequence

•  In the example above, L(M) = {xa | x ∈ {a,b}*}
•  A DFA is a special case of an NFA:

–  An NFA that happens to be deterministic: there is exactly one
transition from every state on every symbol

–  So there is exactly one possible sequence for every string

q1

a,b

q0
a

Nondeterminism

•  The essence of nondeterminism:
–  For a given input there can be more than one legal

sequence of steps
–  The input is in the language if at least one of the legal

sequences says so
•  We can achieve the same result by computing all

legal sequences in parallel and then deterministically
search the legal sequences that accept the input,
but…

•  ...this nondeterminism does not directly correspond to
anything in physical computer systems

•  In spite of that, NFAs have many practical
applications

NFA Example

•  This NFA accepts only
those strings that end in
01

•  Running in “parallel
threads” for string
1100101

q0Start q1 q2
0 1

0,1

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

Nondeterminism DFA:

0

0
0

1

1

1
1

0

q0 q1

q2 q3

NFA:

0,1

0,1

1

q0 q1 q2

Now consider string: 0110

DFAs and NFAs

•  DFAs and NFAs both define languages
•  DFAs do it by giving a simple computational procedure for

deciding language membership:
–  Start in the start state
–  Make one transition on each symbol in the string
–  See if the final state is accepting

•  NFAs do it by considering all possible transitions in parallel.

NFA Advantage
•  An NFA for a language can be smaller and easier to construct than a

DFA
•  Let L={x ∈ {0,1}*|where x is a string whose next-to-last symbol is 1}
•  Construct both a DFA and NFA for recognizing L.

DFA:

0

0
0

1

1

1
1

0

NFA:

0,1

0,1

1

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

Spontaneous Transitions

•  An NFA can make a state transition
spontaneously, without consuming an input
symbol

•  Shown as an arrow labeled with ε
•  For example, {a}* ∪ {b}*:

q0

a q1

q2

ε

ε b

ε-Transitions To Accepting States

•  An ε-transition can be made at any time
•  For example, there are three sequences on the empty string

–  No moves, ending in q0, rejecting
–  From q0 to q1, accepting
–  From q0 to q2, accepting

•  Any state with an ε-transition to an accepting state ends up
working like an accepting state too

q0

a q1

q2

ε

ε b

ε-transitions For NFA Combining

•  ε-transitions are useful for combining smaller
automata into larger ones

•  This machine is combines a machine for {a}*
and a machine for {b}*

•  It uses an ε-transition at the start to achieve
the union of the two languages

q0

a q1

q2

ε

ε b

Revisiting Union
A = {an | n is odd}

B = {bn | n is odd}

A ∪ B

a

a

b

b

a

a

b

b

ε

ε

Concatenation
A = {an | n is odd}

B = {bn | n is odd}

{xy | x ∈ A and y ∈ B}

a

a

b

b

ε

a

a

b

b

Some Exercises
What is the language accepted by the following NFAs?

a) b)

c)

•  Let Σ = {a, b, c}. Give an NFA M that accepts:

 L = {x | x is in Σ* and x contains ab}

More Exercises

•  Let Σ = {a, b}. Give an NFA M that accepts:

 L = {x | x is in Σ* and the third to the last symbol in x is b}

One More Exercise

NFA Exercise

•  Construct an NFA that will accept strings over
alphabet {1, 2, 3} such that the last symbol appears
at least twice, but without any intervening higher
symbol, in between:
–  e.g., 11, 2112, 123113, 3212113, etc.

•  Trick: use start state to mean “I guess I haven't seen
the symbol that matches the ending symbol yet.”
Use three other states to represent a guess that the
matching symbol has been seen, and remembers
what that symbol is.

•  Spoiler Alert: answer on the next slide!

NFA Exercise (answer)

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

Powerset

•  If S is a set, the powerset of S is the set of all subsets of S:

 P(S) = {R | R ⊆ S}

•  This always includes the empty set and S itself
•  For example,

P({1,2,3}) = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

The 5-Tuple

•  The only change from a DFA is the transition function δ
•  δ takes two inputs:

–  A state from Q (the current state)
–  A symbol from Σ∪{ε} (the next input, or ε for an ε-transition)

•  δ produces one output:
–  A subset of Q (the set of possible next states - since multiple transitions can

happen in parallel!)

An NFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where:
 Q is the finite set of states
 Σ is the alphabet (that is, a finite set of symbols)
 δ ∈ (Q × (Σ∪{ε}) → P(Q) is the transition function
 q0 ∈ Q is the start state
 F ⊆ Q is the set of accepting states

Example:

•  Formally, M = (Q, Σ, δ, q0, F), where
–  Q = {q0,q1,q2}
–  Σ = {a,b} (we assume: it must contain at least a and b)
–  F = {q2}
–  δ(q0,a) = {q0,q1}, δ(q0,b) = {q0}, δ(q0,ε) = {q2},
δ(q1,a) = {}, δ(q1,b) = {q2}, δ(q1,ε) = {}
δ(q2,a) = {}, δ(q2,b) = {}, δ(q2,ε) = {}

•  The language defined is {a,b}*

q0 q1

a q2
b

ε

a,b

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

The δ* Function

•  The δ function gives 1-symbol moves
•  We'll define δ* so it gives whole-string results

(by applying zero or more δ moves)
•  For DFAs, we used this recursive definition

–  δ*(q,ε) = q
–  δ*(q,xa) = δ(δ*(q,x),a)

•  The intuition is similar for NFAs taking parallel
transitions into account, but the
ε-transitions add some technical difficulties

NFA IDs

•  An instantaneous description (ID) is a
description of a point in an NFA's execution

•  It is a pair (q,x) where
–  q ∈ Q is the current state
–  x ∈ Σ* is the unread part of the input

•  Initially, an NFA processing a string x has the
ID (q0,x)

•  An accepting sequence of moves ends in an
ID (f,ε) for some accepting state f ∈ F

The One-Move Relation On IDs

•  We write

if I is an ID and J is an ID that could follow
from I after one move of the NFA

•  That is, for any string x ∈ Σ* and any a ∈ Σ or
a = ε,

€

I  J

€

q,ax() r,x() if and only if r ∈ δ q,a()

The Zero-Or-More-Move Relation

•  We write

if there is a sequence of zero or more moves
that starts with I and ends with J:

•  Because it allows zero moves, it is a reflexive
relation: for all IDs I,

€

I ∗ J

€

I  J

€

I∗ I

The δ* Function

•  Now we can define the δ*
function for NFAs:

•  Intuitively, δ*(q,x) is the set of all
states the NFA might be in after
starting in state q and reading x

€

δ∗ q,x() = r q,x()∗ r,ε(){ }

M Accepts x

•  Now δ*(q,x) is the set of states M may end in,
starting from state q and reading all of string x

•  So δ*(q0,x) tells us whether M accepts x by
computing all possible states by executing all
possible transitions in parallel on the string x:

A string x ∈ Σ* is accepted by an NFA M = (Q, Σ, δ, q0, F)
if and only if the set δ*(q0, x) contains at least one
element of F.

For any NFA M = (Q, Σ, δ, q0, F), L(M) denotes
the language accepted by M, which is

 L(M) = {x ∈ Σ* | δ*(q0, x) ∩ F ≠ {}}.

The Language An NFA Defines

Exercise

•  Compute the results of
the following transitions:
–  δ*(q1,ε)
–  δ*(q1,0110)

Assignment

•  Assignment #3 – see website

