
Chapter 6:
NFA Applications

Implementing NFAs

•  The problem with implementing NFAs is that, being
nondeterministic, they define a more complex
computational procedure for testing language
membership.

•  To implement an NFA we must give a computational
procedure that can look at a string and decide
whether the NFA has at least one sequence of legal
transitions on that string leading to an accepting
state.

•  This seems to require searching through all legal
sequences for the given input string—but how?

Implementing NFAs

•  One approach is to convert the NFA into a DFA and
implement that instead.

•  This NFA/DFA conversion is both useful and
theoretically interesting: the fact that it is always
possible shows that in spite of their extra flexibility,
NFAs have exactly the same power as DFAs. They
can define exactly the regular languages.

Outline

•  6.1 NFA Implemented With Backtracking
Search

•  6.2 NFA Implemented With Bit-Mapped
Parallel Search

•  6.3 The Subset Construction
•  6.4 NFAs Are Exactly As Powerful As DFAs
•  6.5 DFA Or NFA?

From NFA To DFA

•  For any NFA, there is a DFA that recognizes
the same language

•  Proof is by construction: a DFA that keeps
track of the set of states the NFA might be in

•  This is called the subset construction
•  First, an example starting from this NFA:

q0
0,1 q2

0,1

q1

1

•  Initially, the set of states the NFA could be in
is just {q0}

•  So our DFA will keep track of that using a
start state labeled {q0}:

q0
0,1 q2

0,1

q1

1

...

...

1

0

{q0}

•  Now suppose the set of states the NFA could
be in is {q0}, and it reads a 0

•  The set of possible states after reading the 0
is {q0}, so we can show that transition:

q0 q1

1 q2

0,1

0,1

...
1

{q0}

0

•  Suppose the set of states the NFA could be in
is {q0}, and it reads a 1

•  The set of possible states after reading the 1
is {q0,q1}, so we need another state:

q0 q1

1 q2

0,1

0,1

...

...

1

0

{q0}

1
0 {q0,q1}

•  From {q0,q1} on a 0, the next set of possible
states is δ(q0,0) ∪ δ(q1,0) = {q0,q2}

•  From {q0,q1} on a 1, the next set of possible
states is δ(q0,1) ∪ δ(q1,1) = {q0,q1,q2}

•  Adding these transitions and states, we get…

q0 q1

1 q2

0,1

0,1

q0 q1

1 q2

0,1

0,1

...

...

...

...

1

0

1

0

{q0}

1
0 {q0,q1}

{q0,q2}

{q0,q1,q2}

1
0

And So On

•  The DFA construction continues
•  Eventually, we find that no further states are

generated
•  That's because there are only finitely many

possible sets of states: P(Q)
•  In our example, we have already found all

sets of states reachable from {q0}…

q0 q1

1 q2

0,1

0,1

{q0}

1
0 {q0,q1}

{q0,q2}

{q0,q1,q2}

0

1
0

1
1

0

Accepting States

•  It only remains to choose the accepting states
•  An NFA accepts x if its set of possible states

after reading x includes at least one accepting
state

•  So our DFA should accept in all sets that
contain at least one NFA accepting state

q0 q1

1 q2

0,1

0,1

{q0}

1
0 {q0,q1}

{q0,q2}

{q0,q1,q2}

0

1
0

1
1

0

Some Exercises
Convert the following NFAs into DFAs.

a) b)

c)

Implementation Note

•  The subset construction defined the DFA
transition function by

 for some set of states R.

€

δD R,a() = δN
* r ,a()

r ∈R


Start State Note

•  In the subset construction, the start state for
the new DFA is

•  Often this is the same as qD = {qN}, as in our
earlier example

•  But the difference is important if there are
ε-transitions from the NFA's start state

€

qD = δN
* qN,ε()

Empty-Set State Note

•  The empty set is a subset of every set
•  So the full subset construction always

produces a DFA state for {}
•  This is reachable from the start state if there

is some string x for which the NFA has no
legal sequence of moves: δN*(qN,x) = {}

•  For example, this NFA, with L(N) = {ε}

q0

•  P({q0}) = { {}, {q0} }
•  A 2-state DFA

{q0}

0,1 {}

0,1

q0

€

δD q0{ },0() = δN
* r ,0()

r ∈ q0{ }
 = { }

δD q0{ },1() = δN
* r ,1()

r ∈ q0{ }
 = { }

δD { },0() = δN
* r,0()

r ∈{ }
 = { }

δD { },1() = δN
* r,1()

r ∈{ }
 = { }

Trap State Provided

•  The subset construction always provides a
state for {}

•  And it is always the case that

so the {} state always has transitions back to
itself for every symbol a in the alphabet

•  It is a non-accepting trap state

€

δD { },a() = δN
* r,a()

r ∈{ }
 = { }

Outline

•  6.1 NFA Implemented With Backtracking
Search

•  6.2 NFA Implemented With Bit-Mapped
Parallel Search

•  6.3 The Subset Construction
•  6.4 NFAs Are Exactly As Powerful As DFAs
•  6.5 DFA Or NFA?

NFAs Are Exactly As Powerful As
DFAs

•  We want to show that NFAs and DFAs are
equivalent.

•  This means we want to show that for any
NFA there is a DFA and for any DFA there is
an NFA.

Lemma 6.3

Proof: Every NFA N gives rise to an equivalent DFA D via the
subset construction with L(N) = L(D). Therefore L(N) is regular.

If L(N) for some NFA N, then L(N) is
a regular language.

Lemma 6.4

Proof:
•  DFAs are just special NFAs that have never have a choice.
•  To turn a DFA into an NFA all we have to do is modify the

transition function from returning single states to sets of states:
–  Let L be any regular language
–  By definition there must be some DFA M = (Q, Σ, δ, q0, F) with L(M) = L
–  Define a new NFA N = (Q, Σ, δ', q0, F), where δ'(q,a) = {δ(q,a)} for all q ∈ Q

and a ∈ Σ, and δ'(q,ε) = {} for all q ∈ Q
–  Now δ'*(q,x) = {δ*(q,x)}, for all q ∈ Q and x ∈ Σ*
–  Thus L(N) = L(M) = L

If L is any regular language, there is
some NFA N for which L(N) = L.

Theorem 6.4

Proof:
•  Follows immediately from the previous lemmas

A language L is L(N) for some NFA N
if and only if L is a regular language.

Assignment #3

•  See website

