
Chapter Seven:
Regular Expressions

Regular Expressions

•  We have seen that DFAs and NFAs have
equal definitional power.

•  It turns out that regular expressions also have
exactly that same definitional power:
–  they can be used to define all the regular

languages, and only the regular languages.

Outline

•  7.1 Regular Expressions, Formally Defined
•  7.2 Regular Expression Examples
•  7.3 For Every Regular Expression, a Regular

Language
•  7.4 Regular Expressions and Structural

Induction
•  7.5 For Every Regular Language, a Regular

Expression

Regular Expression

•  In order to define regular expressions we
need to additional operators on languages:
–  Concatenation
–  Kleene closure

Concatenation of Languages

•  The concatenation of two languages L1 and
L2 is L1L2 = {xy | x ∈ L1 and y ∈ L2}

•  The set of all strings that can be constructed
by concatenating a string from the first
language with a string from the second

•  For example, if L1 = {a, b} and L2 = {c, d} then
L1L2 = {ac, ad, bc, bd}

Kleene Closure of a Language

•  The Kleene closure of a language L is
L* = {x1x2 ... xn | n ≥ 0, with all xi ∈ L}

•  The set of strings that can be formed by concatenating
any number of strings, each of which is an element of L

•  In L*, each xi may be a different element of L
•  For example, {ab, cd}* = {ε, ab, cd, abab, abcd, cdab,

cdcd, ababab, ...}
•  For all L, ε ∈ L*
•  For all L containing at least one string other than ε,

L* is infinite

Note: this is very similar to the set of all strings Σ* over alphabet Σ. In fact, sometimes we talk about the
Kleene closure of the alphabet.

Regular Expressions

•  A regular expression is a string r that denotes
a language L(r) over some
alphabet Σ

•  Regular expressions make special use of the
symbols ε, ∅, +, *, and parentheses

•  We will assume that these special symbols
are not included in Σ

•  There are six kinds of regular expressions…

The Six Regular Expressions
•  The six kinds of regular expressions, and the

languages they denote, are:
–  Three kinds of atomic regular expressions:

•  Any symbol a ∈ Σ, with L(a) = {a}
•  The special symbol ε, with L(ε) = {ε}
•  The special symbol ∅, with L(∅) = {}

–  Three kinds of compound regular expressions built from
smaller regular expressions, here called r, r1, and r2:

•  (r1 + r2), with L(r1 + r2) = L(r1) ∪ L(r2)
•  (r1r2), with L(r1r2) = L(r1)L(r2)
•  (r)*, with L((r)*) = (L(r))*

•  The parentheses may be omitted, in which case * has
highest precedence and + has lowest

Outline

•  7.1 Regular Expressions, Formally Defined
•  7.2 Regular Expression Examples
•  7.3 For Every Regular Expression, a Regular

Language
•  7.4 Regular Expressions and Structural

Induction
•  7.5 For Every Regular Language, a Regular

Expression

ab

•  Denotes the language {ab}
•  Our formal definition permits this because

–  a is an atomic regular expression denoting {a}
–  b is an atomic regular expression denoting {b}
–  Their concatenation (ab) is a compound
–  Unnecessary parentheses can be omitted

•  Thus any string x in Σ* can be used by itself
as a regular expression, denoting {x}

ab+c

•  Denotes the language {ab,c}
•  We omitted parentheses from the fully

parenthesized form ((ab)+c)
•  The inner pair is unnecessary because + has

lower precedence than concatenation
•  Thus any finite language can be defined

using a regular expression
•  Just list the strings, separated by +

Hint: when you see a “+’ in a RE just think “or”

ba*

•  Denotes the language {ban|n≥0}: the set of
strings consisting of b followed by zero or
more as

•  Not the same as (ba)*, which denotes
{(ba)n|n≥0}

•  * has higher precedence than concatenation
•  The Kleene star is the only way to define an

infinite language using regular expressions

(a+b)*

•  Denotes {a,b}*: the whole language of strings
over the alphabet {a,b}

•  The parentheses are necessary here,
because * has higher precedence than +

•  Kleene closure does not distribute, that is,
–  (a+b)* ≠ a*+b*
–  a*+b* denotes {a}* ∪ {b}*

∅

•  Denotes {}
•  There is no other way to denote the empty set

with regular expressions
•  That's all you should ever use ∅ for
•  It is not useful in compounds:

–  L(r∅) = L(∅r) = {}
–  L(r+∅) = L(∅+r) = L(r)
–  L(∅*) = {ε}

From Languages to RE

•  Give the regular expressions for the following languages:
–  {x | x is a string that starts with three 0s followed by arbitrary 0s and

1s and then ends with three 0s}
–  {x | x is a string that starts with a 0 followed by an arbitrary number

of 1s and ends with a 0 OR x is a string that starts with a 1 followed
by an arbitrary number of 0s and ends with a 1}

–  { xn | x is either the string ab or the string c and n >= 0}

Outline

•  7.1 Regular Expressions, Formally Defined
•  7.2 Regular Expression Examples
•  7.3 For Every Regular Expression, a Regular

Language
•  7.4 Regular Expressions and Structural

Induction
•  7.5 For Every Regular Language, a Regular

Expression

Regular Expression to NFA

•  Approach: convert any regular expression to
an NFA for the same language

Standard Form

•  To make them easier to compose, our NFAs
will all have the same standard form:
–  Exactly one accepting state, not the start state

•  That is, for any regular expression r, we will
show how to construct an NFA N with L(N) =
L(r), pictured like this:

 r

Atomic REs

Compound
REs

where r1 and r2
are REs

Outline

•  7.1 Regular Expressions, Formally Defined
•  7.2 Regular Expression Examples
•  7.3 For Every Regular Expression, a Regular

Language
•  7.4 Regular Expressions and Structural

Induction
•  7.5 For Every Regular Language, a Regular

Expression

NFA to Regular Expression

•  There is a way to take any NFA and construct
a regular expression for the same language

•  This gives us our next lemma:
•  Lemma: if N is any NFA, there is some

regular expression r with L(r) = L(N)
•  A tricky construction, covered in Appendix A

(very difficult to follow), the hand-out has a
more intuitive proof.

A language is regular if and only if it is L(r) for some
regular expression r.

Theorem (Kleene's Theorem)

•  Proof: follows from previous two lemmas.

Defining Regular Languages

•  We can define the regular languages:
–  By DFA
–  By NFA
–  By regular expression

•  These three have equal power for defining languages

Alphabets

•  An alphabet is any finite set of symbols
–  {0,1}: binary alphabet
–  {0,1,2,3,4,5,6,7,8,9}: decimal alphabet
–  ASCII, Unicode: machine-text alphabets
–  Or just {a,b}: enough for many examples
–  {}: a legal but not usually interesting alphabet

•  We will usually use Σ as the name of the
alphabet we’re considering, as in Σ = {a,b}

Strings

•  A string is a finite sequence of zero or more
symbols

•  Length of a string: |abbb| = 4
•  A string over the alphabet Σ means

a string all of whose symbols are in Σ
–  The set of all strings of length 2 over the alphabet

{a,b} is {aa, ab, ba, bb}

Languages

•  A language is a set of strings over some fixed
alphabet

•  Not restricted to finite sets: in fact, finite sets
are not usually interesting languages

•  All our alphabets are finite, and all our strings
are finite, but most of the languages we're
interested in are infinite

The Quest

•  Using set formers to describe complex
languages is challenging

•  They can often be vague, ambiguous, or self-
contradictory

•  A big part of our quest in the study of formal
language is to develop better tools for
defining and classifying languages

The Quest

•  We went from this:
–  {x | x is a string that starts with three 0s followed by

arbitrary 0s and 1s and then ends with three 0s}
•  to this:

–  000(0+1)*000

The Quest

•  We just defined a major class of languages:
–  the regular languages

•  The hallmark of these languages is that their
structure is such that simple computational
models (DFA/NFA) can recognize them and
that they can be defined using regular
expressions.

The Quest

•  The idea that the structure of languages is
connected to computational models is
important.

•  Later on we see that the structure of
languages is tightly coupled with idea of
algorithms and classes of computational
problems.

Assignment #4

•  See website

