
Chapter Seven: 
Regular Expressions 



Regular Expressions 

•  We have seen that DFAs and NFAs have 
equal definitional power.   

•  It turns out that regular expressions also have 
exactly that same definitional power:  
–  they can be used to define all the regular 

languages, and only the regular languages.  
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Regular Expression 

•  In order to define regular expressions we 
need to additional operators on languages: 
–  Concatenation 
–  Kleene closure 



Concatenation of Languages 

•  The concatenation of two languages L1 and 
L2 is L1L2 = {xy | x ∈ L1 and y ∈ L2} 

•  The set of all strings that can be constructed 
by concatenating a string from the first 
language with a string from the second 

•  For example, if L1 = {a, b} and L2 = {c, d} then 
L1L2 = {ac, ad, bc, bd} 



Kleene Closure of a Language 

•  The Kleene closure of a language L is  
L* = {x1x2 ... xn |  n ≥ 0, with all xi ∈ L} 

•  The set of strings that can be formed by concatenating 
any number of strings, each of which is an element of L 

•  In L*, each xi may be a different element of L 
•  For example, {ab, cd}* = {ε, ab, cd, abab, abcd, cdab, 

cdcd, ababab, ...} 
•  For all L, ε ∈ L* 
•  For all L containing at least one string other than ε,  

L* is infinite  

Note: this is very similar to the set of all strings Σ* over alphabet Σ. In fact, sometimes we talk about the  
Kleene closure of the alphabet. 



Regular Expressions 

•  A regular expression is a string r that denotes 
a language L(r) over some  
alphabet Σ 

•  Regular expressions make special use of the 
symbols ε, ∅, +, *, and parentheses 

•  We will assume that these special symbols 
are not included in Σ 

•  There are six kinds of regular expressions… 



The Six Regular Expressions 
•  The six kinds of regular expressions, and the 

languages they denote, are: 
–  Three kinds of atomic regular expressions: 

•  Any symbol a ∈ Σ, with L(a) = {a} 
•  The special symbol ε, with L(ε) = {ε} 
•  The special symbol ∅, with L(∅) = {}  

–  Three kinds of compound regular expressions built from 
smaller regular expressions, here called r, r1, and r2: 

•  (r1 + r2), with L(r1 + r2) = L(r1) ∪ L(r2) 
•  (r1r2), with L(r1r2) = L(r1)L(r2) 
•  (r)*, with L((r)*) = (L(r))* 

•  The parentheses may be omitted, in which case * has 
highest precedence and + has lowest 
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ab 

•  Denotes the language {ab} 
•  Our formal definition permits this because 

–  a is an atomic regular expression denoting {a} 
–  b is an atomic regular expression denoting {b} 
–  Their concatenation (ab) is a compound 
–  Unnecessary parentheses can be omitted 

•  Thus any string x in Σ* can be used by itself 
as a regular expression, denoting {x} 



ab+c 

•  Denotes the language {ab,c} 
•  We omitted parentheses from the fully 

parenthesized form ((ab)+c) 
•  The inner pair is unnecessary because + has 

lower precedence than concatenation 
•  Thus any finite language can be defined 

using a regular expression 
•  Just list the strings, separated by + 

Hint: when you see a “+’ in a RE just think “or” 



ba* 

•  Denotes the language {ban|n≥0}: the set of 
strings consisting of b followed by zero or 
more as 

•  Not the same as (ba)*, which denotes  
{(ba)n|n≥0} 

•  * has higher precedence than concatenation 
•  The Kleene star is the only way to define an 

infinite language using regular expressions 



(a+b)* 

•  Denotes {a,b}*: the whole language of strings 
over the alphabet {a,b} 

•  The parentheses are necessary here, 
because * has higher precedence than + 

•  Kleene closure does not distribute, that is, 
–  (a+b)* ≠ a*+b* 
–  a*+b* denotes {a}* ∪ {b}* 



∅ 

•  Denotes {} 
•  There is no other way to denote the empty set 

with regular expressions 
•  That's all you should ever use ∅ for 
•  It is not useful in compounds: 

–  L(r∅) = L(∅r) = {} 
–  L(r+∅) = L(∅+r) = L(r) 
–  L(∅*) = {ε} 



From Languages to RE 

•  Give the regular expressions for the following languages: 
–  {x | x is a string that starts with three 0s followed by arbitrary 0s and 

1s and then ends with three 0s} 
–  {x | x is a string that starts with a 0 followed by an arbitrary number 

of 1s and ends with a 0 OR x is a string that starts with a 1 followed 
by an arbitrary number of 0s and ends with a 1} 

–  { xn | x is either the string ab or the string c and n >= 0} 
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Regular Expression to NFA 

•  Approach: convert any regular expression to 
an NFA for the same language 



Standard Form 

•  To make them easier to compose, our NFAs 
will all have the same standard form: 
–  Exactly one accepting state, not the start state 

•  That is, for any regular expression r, we will 
show how to construct an NFA N with L(N) = 
L(r), pictured like this: 

 
  r 



Atomic REs 



Compound  
REs 

where r1 and r2 
are REs 
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NFA to Regular Expression 

•  There is a way to take any NFA and construct 
a regular expression for the same language 

•  This gives us our next lemma: 
•  Lemma: if N is any NFA, there is some 

regular expression r with L(r) = L(N) 
•  A tricky construction, covered in Appendix A 

(very difficult to follow), the hand-out has a 
more intuitive proof. 



A language is regular if and only if it is L(r) for some 
regular expression r. 

Theorem (Kleene's Theorem) 

•  Proof: follows from previous two lemmas. 



Defining Regular Languages 

•  We can define the regular languages: 
–  By DFA 
–  By NFA 
–  By regular expression 

•  These three have equal power for defining languages 



Alphabets 

•  An alphabet is any finite set of symbols 
–  {0,1}: binary alphabet 
–  {0,1,2,3,4,5,6,7,8,9}: decimal alphabet  
–  ASCII, Unicode: machine-text alphabets 
–  Or just {a,b}: enough for many examples 
–  {}: a legal but not usually interesting alphabet 

•  We will usually use Σ as the name of the 
alphabet we’re considering, as in Σ = {a,b} 



Strings 

•  A string is a finite sequence of zero or more 
symbols 

•  Length of a string: |abbb| = 4 
•  A string over the alphabet Σ means 

a string all of whose symbols are in Σ 
–  The set of all strings of length 2 over the alphabet 

{a,b} is {aa, ab, ba, bb}  



Languages 

•  A language is a set of strings over some fixed 
alphabet 

•  Not restricted to finite sets: in fact, finite sets 
are not usually interesting languages 

•  All our alphabets are finite, and all our strings 
are finite, but most of the languages we're 
interested in are infinite 



The Quest 

•  Using set formers to describe complex 
languages is challenging 

•  They can often be vague, ambiguous, or self-
contradictory 

•  A big part of our quest in the study of formal 
language is to develop better tools for 
defining and classifying languages 



The Quest 

•  We went from this: 
–  {x | x is a string that starts with three 0s followed by 

arbitrary 0s and 1s and then ends with three 0s} 
•  to this: 

–  000(0+1)*000 



The Quest 

•  We just defined a major class of languages: 
–  the regular languages 

•  The hallmark of these languages is that their 
structure is such that simple computational 
models (DFA/NFA) can recognize them and 
that they can be defined using regular 
expressions. 



The Quest 

•  The idea that the structure of languages is 
connected to computational models is 
important. 

•  Later on we see that the structure of 
languages is tightly coupled with idea of 
algorithms and classes of computational 
problems. 



Assignment #4 

•  See website 


