Chapter Ten:
Grammars

Grammars

A grammar is a certain kind of collection of
rules for building strings.

* Like DFAs, NFAs, and regular expressions,
grammars are mechanisms for defining
languages rigorously.

Outline

\

0.1 A Grammar Example for English
10.2 The 4-Tuple
10.3 The Language Generated by a Grammar

10.4 Every Regular Language Has a
Grammar

10.5 Right-Linear Grammars

10.6 Every Right-linear Grammar Generates
a Regular Language

A Little English

 An article can be the word a or the:

A— a
A — the

A noun can be the word dog, cat or rat:
N — dog
N — cat
N — rat
A noun phrase is an article followed by a noun:

P — AN

A Little English

 An verb can be the word loves, hates or eats:

V — loves
V — hates
V — eats

A sentence can be a noun phrase, followed by a verb, followed
by another noun phrase:

S - PVP

The Little English Grammar

« Taken all together, a grammar G, for a small subset
of unpunctuated English:

S — PVP A—a
P— AN A — the
V — loves N — dog
V — hates N — cat
V — eats N — rat

« Each production says how to modify strings by
substitution

* X — Yy says, substring x may be replaced by y

S — PVP A—a
P— AN A — the
V — loves N — dog
V — hates N — cat
V — eats N — rat

« Start from S and follow the productions of G,
« This can derive a variety of (unpunctuated) English sentences:

S'= PVP = ANVP = theNVP = thecatVP = thecateatsP = thecateatsAN
= thecateatsalN = thecateatsarat

S = PVP = ANVP = aNVP = adogV P = adoglovesP = adoglovesAN
= adoglovestheN = adoglovesthecat

S = PVP = ANVP = theNVP = thecatV P = thecathatesP = thecathatesAN
=> thecathatestheN = thecathatesthedog

S — PVP A—a
P— AN A — the
V — loves N — dog
V — hates N — cat
V — eats N — rat

Often there is more than one place in a string where a production could
be applied

For example, PlovesP:
— PlovesP = ANlovesP
— PlovesP = PlovesAN

The derivations on the previous slide chose the leftmost substitution at
every step, but that is not a requirement

The language defined by a grammar is the set of lowercase strings that
have at least one derivation from the start symbol S

S — PVP

P — AN

V — loves | hates | eats
A — a| the

N — dog | cat | rat

Often, a grammar contains more than one
production with the same left-hand side

Those productions can be written in a
compressed form

The grammar is not changed by this
This example still has ten productions

Informal Definition

A grammar is a set of productions of the form x — y.
The strings x and y can contain both lowercase and

uppercase letters; x cannot be empty, but y can be «.
One uppercase letter is designated as the start
symbol (conventionally, it is the letter S).

Productions define permissible string substitutions

When a sequence of permissible substitutions
starting from S ends in a string that is all lowercase,
we say the grammar generates that string

L(G) is the set of all strings generated by grammar G

S — aS
S— X
X — bX
X— ¢

« That final production for X says that X may be replaced by the
empty string, so that for example abbX = abb

* Written in the more compact way, this grammar is:

S—aS|X
X—bX| ¢

S—aS|X
X—bX|e

S=aS5=aX=a

S=X=bHX= b

S= a8 = aX = abX = abbX = abb

S = al = aal = aaal = aaaX =
aaabX = aaabbX = aaabb

S—=aS|X
X—bX| ¢

* For this grammar, all derivations of lowercase
strings follow this simple pattern:
— First use S — aS zero or more times
— Then use S — X once
— Then use X — bX zero or more times
— Then use X — ¢ once

* So the generated string always consists of
zero or more as followed by zero or more bs

. L(G) = L(a*h?)

Untapped Power

All our examples have used productions with a single uppercase
letter on the left-hand side

Grammars can have any non-empty string on the left-hand side

The mechanism of substitution is the same
— Sb — bS says that bS can be substituted for Sb

Such productions can be very powerful, but we won't need that
power yet

We'll concentrate on grammars with one uppercase letter on the
left-hand side of every production

Outline

10.1 A Grammar Example for English
10.2 The 4-Tuple
10.3 The Language Generated by a Grammar

10.4 Every Regular Language Has a
Grammar

10.5 Right-Linear Grammars

10.6 Every Right-linear Grammar Generates
a Regular Language

Formalizing Grammars

* Our informal definition relied on the difference
between lowercase and uppercase

* The formal definition will use two separate alphabets:

— The terminal symbols (typically lowercase)
— The nonterminal symbols (typically uppercase)

« So a formal grammar has four parts...

4-Tuple Definition

« Agrammar Gis a 4-tuple G = (V, Z, S, P), where:
— Vs an alphabet, the nonterminal alphabet

— 2 is another alphabet, the terminal alphabet, disjoint from V
(includes ¢)

— S & Vs the start symbol

— P is a finite set of productions, each of the form
x — y, where x and y are strings over 2 U V and
X =€

Example

S—aS|X
X—bX| ¢

 Formally, thisis G =(V, %, S, P), where:
- V={S X}
— X ={a, b}
— P={S—aS,S—X X— bX, X — ¢}
* The order of the 4-tuple is what counts:
- G=({S X} {a b}, S, {S—aS, S— X, X— bX, X — &})

Outline

10.1 A Grammar Example for English
10.2 The 4-Tuple
10.3 The Language Generated by a Grammar

10.4 Every Regular Language Has a
Grammar

10.5 Right-Linear Grammars

10.6 Every Right-linear Grammar Generates
a Regular Language

Computations in our models

 For DFAs, we derived a zero-or-more-step 0"
function from the one-step 6

 For NFAs, we derived a one-step relation on
IDs, then extended it to a zero-or-more-step
relation

« We'll do the same kind of thing for
grammars...

w = z : One-Step Derivation

Defined for a grammar G = (V, X, S, P) the symbol =
IS a relation on strings

w = z ("w derives z") if and only if there exist strings
u, X, y, and vover 2 U V, with

— W =UuUxv

— Z=Uyv

- (x—=y)EP
That is , w can be transformed into z using one of the
substitutions permitted by G

Example:

S—aS|X S=aS = aX= abX = abbX = abb
X—bX|e

« S = aS with wxu = wyu where
- X=9S
—y=aS
— W=U-=¢
—(S—aS)inP

w =" Z . n-Step Derivation

« A sequence of =-related strings
X, = X4 = ... = X, IS an n-step derivation
« w="_zifand only if there is a derivation of
0 or more steps that starts with w and ends with z

« Thatis, w can be transformed into z using a

sequence of zero or more of the substitutions
permitted by G

Example:

S—aS|X S=aS = aX= abX = abbX = abb
X—bX|e

« S =" abb with steps:
- S=aS
—aS = aX
— aX = abX
— abX = abbX
— abbX = abb

L(G)

The language generated by a grammar G is
L(G)={xeXZ*| S="x}

That is, the set of terminal strings derivable from the
start symbol
Notice the restriction x € =*:

— The intermediate strings in a derivation can use both
zand V

— But only the terminal strings are in L(G)

Outline

10.1 A Grammar Example for English
10.2 The 4-Tuple
10.3 The Language Generated by a Grammar

0.4 Every Regular Language Has a
Grammar

10.5 Right-Linear Grammars

10.6 Every Right-linear Grammar Generates
a Regular Language

\

NFA to Grammar

* To show that there is a grammar for every
regular language, we will show how to
convert any NFA into an equivalent grammar

 Thatis, given an NFA M, construct a
grammar G with L(M) = L(G)
* First, an example...

a C

Example: G O
P OO0

The grammar we will construct generates L(M)
In fact, its derivations will mimic what M does

For each state, our grammar will have a nonterminal symbol (S,
Rand T)

The start state will be the grammar's start symbol

The grammar will have one production for each transition of the
NFA, and one for each accepting state

Example:

* For each possible transition Y & 6(X,z) in the
NFA, our grammar has a production X — zY

« That gives us these four to start with:

Transition of M

Production in G

8(S,a) ={S} S—aS
8(S,b) = {R} S — bR
O(R,c) = {R} R — cR
o(R

&)= {T}

R— T

Example: GO
P INCENGENG

 |n addition, for each accepting state in the
NFA, our grammar has an e-production

 That adds one more:

Accepting state of M |Production in G
T | I —c¢

Example: &, &

* The complete grammar has one production
for each transition, and one for each
accepting state:

S — aS
S — bR
R — cR
R—T
T —¢

S —aS . .

S — bR \Q vy

R — cR OO ©
R—T

I —¢

« Compare the behavior of M as it accepts abc with the
behavior of G as it generates abc:

(Saabc) (Sbc) » (Rc) s (Reg) w (T ¢)
S = aS = abR = abcR = abcT = abc

« Every time the NFA reads a symbol, the grammar
generates that symbol

Theorem 10.4

Every regular language is generated by some grammar.

Proof is by construction; let M = (Q, Z, 3, S, F) be any NFA
Construct G=(Q, £, S, P)
— Q, X, and S are the same as for M
— P is constructed from 6 and F:
 Wherever M has Y € §(X,z), P contains X — zY
* And for each X & F, P contains X — ¢

Now G has X — zY whenever Y € 6(X,z) and Y — ¢ whenever M
has YE F

So for all strings z € =¥, 6*(S,z) contains at least one element of F if
andonly if S ="z

Therefore, L(M) = L(G)

The Converse is NOT true

 The Theorem "Every grammar generates a
regular language” is not true.

* We can easily show this by an example of a
grammar that does not generate a regular
language:

S — aSb
S —¢

L(G)={a""|[n=0}

Outline

10.1 A Grammar Example for English
10.2 The 4-Tuple
10.3 The Language Generated by a Grammar

10.4 Every Regular Language Has a
Grammar

10.5 Right-Linear Grammars

10.6 Every Right-linear Grammar Generates
a Regular Language

Single-Step Grammars

A grammar G = (V, Z, S, P) is single step if and only if every
production in P is in one of these three forms, where X & V,
YEV,and zE >:

- X—=2zY

— X — Y (think of this as the rule X — ¢Y)

— X—¢
Given any single-step grammar, we could run the previous
construction backwards, building an equivalent NFA...

Reverse Example

S —aR
This grammar generates L(ab*a): g — bl;
All its productions are of the kinds T a
built in our construction — ¢t

Running the construction backwards, we get three
states S, R,and T

The first three productions give us the three arrows,
and the fourth makes T accepting:

Production Massage |2~ 2%

R — a

Even if all the productions are not of the
required form, it is sometimes possible to
massage them until they are

S — abR does not have the right form:
— Equivalent productions S — aX and X — bR do

R — a does not have the right form:
— Equivalent productions R — aYand Y — ¢ do

After those changes we can run the
construction backwards...

Massaged Reverse Example

S — abR
R — a

S — aX
X— bR
R — aY
Y —¢

iy

G ENGENGEN

Right-Linear Grammars

A grammar G = (V, 2, S, P) is right linear if and only if every
production in P is in one of these two forms, where X & V,
YeV, and z € >*;

— X—=2zY, or
- X—z
So every production has:
— A single nonterminal on the left

— At most one nonterminal on the right, and only as the rightmost
symbol

Note that this includes all single-step grammars

This special form makes it easy to massage the productions and
then transform them into NFAs

Lemma 10.5

Every right-linear grammar G is equivalent to
some single-step grammar G,

Proof is by construction

Let G=(V, 2, S, P) be any right-linear grammar

Each production is X — z,...z,w, where zeZand w € Vorw = ¢
For each such production, let P contains

these n+1 productions, where each K, X - z,K,
is a new nonterminal symbol: K, — z,K,

Now let G = (V' Z, S, P'), where V' is
the set of nonterminals used in P'

Any step of a derivation G is equivalent Ky —w

Kn-1 — Zn Kn

to the corresponding n+1 steps in G’
The reverse is true for derivations of terminal strings in G’
So L(G) = L(G")

Example

S — abS i*ag%

S 1 > PRy
S—a > K S
S—a

Outline

10.1 A Grammar Example for English
10.2 The 4-Tuple
10.3 The Language Generated by a Grammar

10.4 Every Regular Language Has a
Grammar

10.5 Right-Linear Grammars

10.6 Every Right-linear Grammar Generates
a Regular Language

Theorem 10.6

For every right-linear grammar G, L(G) is regular.

* Proof is by construction

« Use Lemma 10.5 to get single-step form, then use the reverse
of the construction from Theorem 10.4

S — abS
S —a

S — akK,
K, — bK,
K, - S
S—a

S — akK,
K, — bK,
K, - S
S —aY

Left-Linear Grammars

« Agrammar G = (V, Z, S, P) is left linear if and only if
every production in P is in one of these two forms,
where Xe€ V, YE V,and z € Z*:

— X—= Yz or
— X—=z

« This parallels the definition of right-linear

« With a little more work, one can show that the
language generated is also always regular

Regular Grammars,
Regular Languages

Grammars that are either left-linear or right-linear are
called reqular grammars

A simple inspection tells you whether G is a regular
grammar; if it is, L(G) is a regular language

Note that if G is not a regular grammar, that tells you
nothing: L(G) might still be regular language

This example is not right-linear and not left-linear, but
L(G) is the regular language L((aaa)”):

S — aSaa | ¢

The Next Big Question

We know that all regular grammars generate
regular languages

We've seen a non-regular grammar that still
generates a regular language

So are there any grammars that generate
languages that are not regular?

For that matter, do any non-regular
languages exist?

Answers to these in the next chapter

