
Chapter Ten:
Grammars

Grammars

Outline

•  10.1 A Grammar Example for English
•  10.2 The 4-Tuple
•  10.3 The Language Generated by a Grammar
•  10.4 Every Regular Language Has a

Grammar
•  10.5 Right-Linear Grammars
•  10.6 Every Right-linear Grammar Generates

a Regular Language

A Little English

•  An article can be the word a or the:

 A → a
A → the

•  A noun can be the word dog, cat or rat:
 N → dog
N → cat
N → rat

A noun phrase is an article followed by a noun:
 P → AN

A Little English

•  An verb can be the word loves, hates or eats:
 V → loves
V → hates
V → eats

A sentence can be a noun phrase, followed by a verb, followed
by another noun phrase:

 S → PVP

The Little English Grammar

•  Taken all together, a grammar G1 for a small subset
of unpunctuated English:

•  Each production says how to modify strings by
substitution

•  x → y says, substring x may be replaced by y

S → PVP A → a
P → AN A → the
V → loves N → dog
V → hates N → cat
V → eats N → rat

•  Start from S and follow the productions of G1
•  This can derive a variety of (unpunctuated) English sentences:

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecateatsP ⇒ thecateatsAN
 ⇒ thecateatsaN ⇒ thecateatsarat

S ⇒ PVP ⇒ ANVP ⇒ aNVP ⇒ adogVP ⇒ adoglovesP ⇒ adoglovesAN
 ⇒ adoglovestheN ⇒ adoglovesthecat

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecathatesP ⇒ thecathatesAN
 ⇒ thecathatestheN ⇒ thecathatesthedog

S → PVP A → a
P → AN A → the
V → loves N → dog
V → hates N → cat
V → eats N → rat

•  Often there is more than one place in a string where a production could
be applied

•  For example, PlovesP:
–  PlovesP ⇒ ANlovesP
–  PlovesP ⇒ PlovesAN

•  The derivations on the previous slide chose the leftmost substitution at
every step, but that is not a requirement

•  The language defined by a grammar is the set of lowercase strings that
have at least one derivation from the start symbol S

S → PVP A → a
P → AN A → the
V → loves N → dog
V → hates N → cat
V → eats N → rat

•  Often, a grammar contains more than one
production with the same left-hand side

•  Those productions can be written in a
compressed form

•  The grammar is not changed by this
•  This example still has ten productions

S → PVP
P → AN
V → loves | hates | eats
A → a | the
N → dog | cat | rat

Informal Definition

•  Productions define permissible string substitutions
•  When a sequence of permissible substitutions

starting from S ends in a string that is all lowercase,
we say the grammar generates that string

•  L(G) is the set of all strings generated by grammar G

A grammar is a set of productions of the form x → y.
The strings x and y can contain both lowercase and
uppercase letters; x cannot be empty, but y can be ε.
One uppercase letter is designated as the start
symbol (conventionally, it is the letter S).

•  That final production for X says that X may be replaced by the
empty string, so that for example abbX ⇒ abb

•  Written in the more compact way, this grammar is:

S → aS | X
X → bX | ε	

S → aS
S → X
X → bX
X → ε

S ⇒ aS ⇒ aX ⇒ a

S ⇒ X ⇒ bX ⇒ b

S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒ abb

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaX ⇒
 aaabX ⇒ aaabbX ⇒ aaabb

S → aS | X
X → bX | ε	

•  For this grammar, all derivations of lowercase
strings follow this simple pattern:
–  First use S → aS zero or more times
–  Then use S → X once
–  Then use X → bX zero or more times
–  Then use X → ε once

•  So the generated string always consists of
zero or more as followed by zero or more bs

•  L(G) = L(a*b*)

S → aS | X
X → bX | ε

Untapped Power

•  All our examples have used productions with a single uppercase
letter on the left-hand side

•  Grammars can have any non-empty string on the left-hand side
•  The mechanism of substitution is the same

–  Sb → bS says that bS can be substituted for Sb
•  Such productions can be very powerful, but we won't need that

power yet
•  We'll concentrate on grammars with one uppercase letter on the

left-hand side of every production

Outline

•  10.1 A Grammar Example for English
•  10.2 The 4-Tuple
•  10.3 The Language Generated by a Grammar
•  10.4 Every Regular Language Has a

Grammar
•  10.5 Right-Linear Grammars
•  10.6 Every Right-linear Grammar Generates

a Regular Language

Formalizing Grammars

•  Our informal definition relied on the difference
between lowercase and uppercase

•  The formal definition will use two separate alphabets:
–  The terminal symbols (typically lowercase)
–  The nonterminal symbols (typically uppercase)

•  So a formal grammar has four parts…

4-Tuple Definition

•  A grammar G is a 4-tuple G = (V, Σ, S, P), where:
–  V is an alphabet, the nonterminal alphabet
–  Σ is another alphabet, the terminal alphabet, disjoint from V

(includes ε)
–  S ∈ V is the start symbol
–  P is a finite set of productions, each of the form

x → y, where x and y are strings over Σ ∪ V and
x ≠ε

Example

•  Formally, this is G = (V, Σ, S, P), where:
–  V = {S, X}
–  Σ = {a, b}
–  P = {S → aS, S → X, X → bX, X → ε}

•  The order of the 4-tuple is what counts:
–  G = ({S, X}, {a, b}, S, {S → aS, S → X, X → bX, X → ε})

S → aS | X
X → bX | ε

Outline

•  10.1 A Grammar Example for English
•  10.2 The 4-Tuple
•  10.3 The Language Generated by a Grammar
•  10.4 Every Regular Language Has a

Grammar
•  10.5 Right-Linear Grammars
•  10.6 Every Right-linear Grammar Generates

a Regular Language

Computations in our models

•  For DFAs, we derived a zero-or-more-step δ*
function from the one-step δ

•  For NFAs, we derived a one-step relation on
IDs, then extended it to a zero-or-more-step
relation

•  We'll do the same kind of thing for
grammars…

w ⇒ z : One-Step Derivation

•  Defined for a grammar G = (V, Σ, S, P) the symbol ⇒
is a relation on strings

•  w ⇒ z ("w derives z") if and only if there exist strings
u, x, y, and v over Σ ∪ V, with
–  w = uxv
–  z = uyv
–  (x → y) ∈ P

•  That is , w can be transformed into z using one of the
substitutions permitted by G

S → aS | X
X → bX | ε	

S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒ abb

Example:

•  S ⇒ aS with wxu ⇒ wyu where
–  x = S
–  y = aS
–  w = u = ε	

–  (S → aS) in P

w ⇒* z : n-Step Derivation

•  A sequence of ⇒-related strings
x0 ⇒ x1 ⇒ ... ⇒ xn, is an n-step derivation

•  w ⇒* z if and only if there is a derivation of
0 or more steps that starts with w and ends with z

•  That is, w can be transformed into z using a
sequence of zero or more of the substitutions
permitted by G

S → aS | X
X → bX | ε	

S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒ abb

Example:

•  S ⇒* abb with steps:
–  S ⇒ aS
–  aS ⇒ aX
–  aX ⇒ abX	

–  abX ⇒ abbX
–  abbX ⇒ abb

L(G)

•  The language generated by a grammar G is
L(G) = {x ∈ Σ* | S ⇒* x}

•  That is, the set of terminal strings derivable from the
start symbol

•  Notice the restriction x ∈ Σ*:
–  The intermediate strings in a derivation can use both
Σ and V

–  But only the terminal strings are in L(G)

Outline

•  10.1 A Grammar Example for English
•  10.2 The 4-Tuple
•  10.3 The Language Generated by a Grammar
•  10.4 Every Regular Language Has a

Grammar
•  10.5 Right-Linear Grammars
•  10.6 Every Right-linear Grammar Generates

a Regular Language

NFA to Grammar

•  To show that there is a grammar for every
regular language, we will show how to
convert any NFA into an equivalent grammar

•  That is, given an NFA M, construct a
grammar G with L(M) = L(G)

•  First, an example…

Example:

•  The grammar we will construct generates L(M)
•  In fact, its derivations will mimic what M does
•  For each state, our grammar will have a nonterminal symbol (S,

R and T)
•  The start state will be the grammar's start symbol
•  The grammar will have one production for each transition of the

NFA, and one for each accepting state

S R

b

c

T

ε

a

Example:

•  For each possible transition Y ∈ δ(X,z) in the
NFA, our grammar has a production X → zY

•  That gives us these four to start with:
Transition of M Production in G
(S,a) = {S } S → aS
(S,b) = {R } S → bR
(R,c) = {R} R → cR
(R,) = {T } R → T

S R

b

c

T

ε

a

Example:

•  In addition, for each accepting state in the
NFA, our grammar has an ε-production

•  That adds one more:
Accepting state of M Production in G
T T →

S R

b

c

T

ε

a

Example:

•  The complete grammar has one production
for each transition, and one for each
accepting state:

S R

b

c

T

ε

a

S → aS
S → bR
R → cR
R → T
T → ε

•  Compare the behavior of M as it accepts abc with the
behavior of G as it generates abc:

•  Every time the NFA reads a symbol, the grammar
generates that symbol

(S,abc)

€

 (S,bc)

€

 (R ,c)

€

 (R,)

€

 (T,)
S ⇒ a S ⇒ abR ⇒ abcR ⇒ abcT ⇒ abc

S R

b

c

T

ε

a S → aS
S → bR
R → cR
R → T
T → ε

Theorem 10.4

•  Proof is by construction; let M = (Q, Σ, δ, S, F) be any NFA
•  Construct G = (Q, Σ, S, P)

–  Q, Σ, and S are the same as for M
–  P is constructed from δ and F:

•  Wherever M has Y ∈ δ(X,z), P contains X → zY
•  And for each X ∈ F, P contains X → ε

•  Now G has X → zY whenever Y ∈ δ(X,z) and Y → ε whenever M
has Y ∈ F

•  So for all strings z ∈ Σ*, δ*(S,z) contains at least one element of F if
and only if S ⇒* z

•  Therefore, L(M) = L(G)

Every regular language is generated by some grammar.

The Converse is NOT true

•  The Theorem “Every grammar generates a
regular language” is not true.

•  We can easily show this by an example of a
grammar that does not generate a regular
language:

S → aSb
S → ε

L(G) = { anbn | n ≥ 0 }

Outline

•  10.1 A Grammar Example for English
•  10.2 The 4-Tuple
•  10.3 The Language Generated by a Grammar
•  10.4 Every Regular Language Has a

Grammar
•  10.5 Right-Linear Grammars
•  10.6 Every Right-linear Grammar Generates

a Regular Language

Single-Step Grammars

•  A grammar G = (V, Σ, S, P) is single step if and only if every
production in P is in one of these three forms, where X ∈ V,
Y ∈ V, and z ∈ Σ:
–  X → zY
–  X → Y (think of this as the rule X → εY)
–  X → ε

•  Given any single-step grammar, we could run the previous
construction backwards, building an equivalent NFA…

Reverse Example

•  This grammar generates L(ab*a):
•  All its productions are of the kinds

built in our construction
•  Running the construction backwards, we get three

states S, R, and T
•  The first three productions give us the three arrows,

and the fourth makes T accepting:

S → aR
R → bR
R → aT
T → ε

S R

a

b

T

a

Production Massage

•  Even if all the productions are not of the
required form, it is sometimes possible to
massage them until they are

•  S → abR does not have the right form:
–  Equivalent productions S → aX and X → bR do

•  R → a does not have the right form:
–  Equivalent productions R → aY and Y → ε do

•  After those changes we can run the
construction backwards…

S → abR
R → a

Massaged Reverse Example
S → abR
R → a

S → aX
X → bR
R → aY
Y → ε

S R

a Y

a X

b

Right-Linear Grammars

•  A grammar G = (V, Σ, S, P) is right linear if and only if every
production in P is in one of these two forms, where X ∈ V,
Y ∈ V, and z ∈ Σ*:
–  X → zY, or
–  X → z

•  So every production has:
–  A single nonterminal on the left
–  At most one nonterminal on the right, and only as the rightmost

symbol
•  Note that this includes all single-step grammars
•  This special form makes it easy to massage the productions and

then transform them into NFAs

Lemma 10.5

•  Proof is by construction
•  Let G = (V, Σ, S, P) be any right-linear grammar
•  Each production is X → z1...znω, where zi∈Σ and ω ∈ V or ω = ε
•  For each such production, let P contains

these n+1 productions, where each Ki
is a new nonterminal symbol:

•  Now let G = (V', Σ, S, P'), where V' is
the set of nonterminals used in P'

•  Any step of a derivation G is equivalent
to the corresponding n+1 steps in G'

•  The reverse is true for derivations of terminal strings in G'
•  So L(G) = L(G')

Every right-linear grammar G is equivalent to
some single-step grammar G'.

X → z1K1
K1 → z2K2
…
Kn-1 → zn Kn	

Kn → ω

Example

S → abS
S → a

S → aK1
K1 → bK2
K2 → S
S → a

Outline

•  10.1 A Grammar Example for English
•  10.2 The 4-Tuple
•  10.3 The Language Generated by a Grammar
•  10.4 Every Regular Language Has a

Grammar
•  10.5 Right-Linear Grammars
•  10.6 Every Right-linear Grammar Generates

a Regular Language

Theorem 10.6

•  Proof is by construction
•  Use Lemma 10.5 to get single-step form, then use the reverse

of the construction from Theorem 10.4

For every right-linear grammar G, L(G) is regular.

Example
S → abS
S → a

S

K1

Y

a

a

S → aK1
K1 → bK2
K2 → S
S → a

S → aK1
K1 → bK2
K2 → S
S → aY
Y → ε

K2

b

ε

Left-Linear Grammars

•  A grammar G = (V, Σ, S, P) is left linear if and only if
every production in P is in one of these two forms,
where X ∈ V, Y ∈ V, and z ∈ Σ*:
–  X → Yz, or
–  X → z

•  This parallels the definition of right-linear
•  With a little more work, one can show that the

language generated is also always regular

Regular Grammars,
Regular Languages

•  Grammars that are either left-linear or right-linear are
called regular grammars

•  A simple inspection tells you whether G is a regular
grammar; if it is, L(G) is a regular language

•  Note that if G is not a regular grammar, that tells you
nothing: L(G) might still be regular language

•  This example is not right-linear and not left-linear, but
L(G) is the regular language L((aaa)*):

S → aSaa | ε

The Next Big Question

•  We know that all regular grammars generate
regular languages

•  We've seen a non-regular grammar that still
generates a regular language

•  So are there any grammars that generate
languages that are not regular?

•  For that matter, do any non-regular
languages exist?

•  Answers to these in the next chapter

