
Chapter Twelve:
Context-Free Languages

Context-Free Languages

•  We defined the right-linear grammars by giving a
simple restriction on the form of each production.

•  By relaxing that restriction a bit, we get a broader
class of grammars: the context-free grammars.

•  These grammars generate the context-free
languages, which include all the regular languages
along with many that are not regular.

Outline

•  12.1 Context-Free Grammars and Languages
•  12.2 Writing CFGs
•  12.3 CFG Applications: BNF
•  12.4 Parse Trees
•  12.5 Ambiguity
•  12.6 EBNF

Examples

•  We can prove that these languages are not
regular, yet they have grammars
–  {anbn}

–  {xxR | x ∈ {a,b}*}

–  {anbjan | n ≥ 0, j ≥ 1}
•  Although not right-linear, these grammars still

follow a rather restricted form…

S → aSb | ε

S → aSa | bSb | ε	

 S → aSa | R
R → bR | b	

Context-Free Grammars

•  A context-free grammar (CFG) is one in
which every production has a single
nonterminal symbol on the left-hand side

•  A production like R → y is permitted
–  It says that R can be replaced with y, regardless of

the context of symbols around R in the string
•  One like uRz → uyz is not permitted

–  That would be context-sensitive: it says that R can
be replaced with y only in a specific context

Context-Free Languages

•  A context-free language (CFL) is one that is
L(G) for some CFG G

•  Every regular language is a CFL
–  Every regular language has a right-linear grammar
–  Every right-linear grammar is a CFG

•  But not every CFL is regular
–  {anbn}
–  {xxR | x ∈ {a,b}*}
–  {anbjan | n ≥ 0, j ≥ 1}

Language Classes So Far

regular
languages

CFLs

L(a*b*)

{anbn}

Outline

•  12.1 Context-Free Grammars and Languages
•  12.2 Writing CFGs
•  12.3 CFG Applications: BNF
•  12.4 Parse Trees
•  12.5 Ambiguity
•  12.6 EBNF

Writing CFGs
•  Programming:

–  A program is a finite, structured, mechanical thing that specifies a
potentially infinite collection of runtime behaviors

–  You have to imagine how the code you are crafting will unfold when
it executes

•  Writing grammars:
–  A grammar is a finite, structured, mechanical thing that specifies a

potentially infinite language
–  You have to imagine how the productions you are crafting will

unfold in the derivations of terminal strings
•  Programming and grammar-writing use some of the same

mental muscles
•  Here follow some techniques and examples…

Regular Languages

•  If the language is regular, we already have a
technique for constructing a CFG
–  Start with an NFA
–  Convert to a right-linear grammar using the

construction from chapter 10

Example
L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3}

S → 1S | 0T | ε
T → 1T | 0U
U → 1U | 0S

S U
0

0

1

T
0

1 1

Example

•  The conversion from NFA to grammar always works
•  But it does not always produce a pretty grammar
•  It may be possible to design a smaller or otherwise more

readable CFG manually:

L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3}

S → 1S | 0T | ε
T → 1T | 0U
U → 1U | 0S

S → T0T0T0S | T
T → 1T | ε

Balanced Pairs

•  CFLs often seem to involve balanced pairs
–  {anbn}: every a paired with b on the other side
–  {xxR | x ∈ {a,b}*}: each symbol in x paired with its

mirror image in xR
–  {anbjan | n ≥ 0, j ≥ 1}: each a on the left paired with

one on the right
•  To get matching pairs, use a recursive

production of the form R → xRy
•  This generates any number of xs, each of

which is matched with a y on the other side

Examples

•  We've seen these before:
–  {anbn}

–  {xxR | x ∈ {a,b}*}

–  {anbjan | n ≥ 0, j ≥ 1}

•  Notice that they all use the R → xRy trick

S → aSb | ε

S → aSa | bSb | ε	

S → aSa | R
R → bR | b	

S → aSbbb | ε

S → XSY | ε
X → a | b
Y → c | d	

Examples

•  {anb3n}
–  Each a on the left can be paired with three bs on the right
–  That gives

•  {xy | x ∈ {a,b}*, y ∈ {c,d}*, and |x| = |y|}
–  Each symbol on the left (either a or b) can be paired with one on

the right (either c or d)
–  That gives

Concatenations
•  A divide-and-conquer approach is often helpful
•  For example, L = {anbncmdm}

–  We can make grammars for {anbn} and {cmdm}:

–  Now every string in L consists of a string from the first followed by a
string from the second

–  So combine the two grammars and add a new start symbol:

S1 → aS1b | ε S2 → cS2d | ε

S → S1S2
S1 → aS1b | ε
S2 → cS2d | ε

Concatenations, In General

•  Sometimes a CFL L can be thought of as the
concatenation of two languages L1 and L2
–  That is, L = L1L2 = {xy | x ∈ L1 and y ∈ L2}

•  Then you can write a CFG for L by combining
separate CFGs for L1 and L2
–  Be careful to keep the two sets of nonterminals separate, so

no nonterminal is used in both
–  In particular, use two separate start symbols S1 and S2

•  The grammar for L consists of all the productions
from the two sub-grammars, plus a new start symbol
S with the production S → S1S2

Unions, In General

•  Sometimes a CFL L can be thought of as the union of
two languages L = L1 ∪ L2

•  Then you can write a CFG for L by combining
separate CFGs for L1 and L2
–  Be careful to keep the two sets of nonterminals separate, so

no nonterminal is used in both
–  In particular, use two separate start symbols S1 and S2

•  The grammar for L consists of all the productions
from the two sub-grammars, plus a new start symbol
S with the production S → S1 | S2

Example

•  This can be thought of as a union: L = L1 ∪ L2
–  L1 = {xxR | x ∈ {a,b}*}

–  L2 = {z ∈ {a,b}* | |z| is odd}

•  So a grammar for L is

L = {z ∈ {a,b}* | z = xxR for some x, or |z| is odd}

S1 → aS1a | bS1b | ε

S2 → XXS2 | X
X → a | b

S → S1 | S2
S1 → aS1a | bS1b | ε
S2 → XXS2 | X
X → a | b

Example

•  This can be thought of as a union:
–  L = {anbm | n < m} ∪ {anbm | n > m}

•  Each of those two parts can be thought of as
a concatenation:
–  L1 = {anbn}
–  L2 = {bi | i > 0}
–  L3 = {ai | i > 0}
–  L = L1L2 ∪ L3L1

•  The resulting grammar:

L = {anbm | n ≠ m}

S → S1S2 | S3S1
S1 → aS1b | ε
S2 → bS2 | b
S3 → aS3 | a

