Chapter Twelve: Context-Free Languages

Context-Free Languages

- We defined the right-linear grammars by giving a simple restriction on the form of each production.
- By relaxing that restriction a bit, we get a broader class of grammars: the *context-free grammars*.
- These grammars generate the context-free languages, which include all the regular languages along with many that are not regular.

Outline

- 12.1 Context-Free Grammars and Languages
- 12.2 Writing CFGs
- 12.3 CFG Applications: BNF
- 12.4 Parse Trees
- 12.5 Ambiguity
- 12.6 EBNF

 We can prove that these languages are not regular, yet they have grammars

$$-\{a^nb^n\}$$

$$S \rightarrow aSb \mid \epsilon$$

$$-\{xx^R \mid x \in \{a,b\}^*\}$$

$$S \rightarrow aSa \mid bSb \mid \epsilon$$

$$-\left\{a^{n}b^{j}a^{n}\mid n\geq0,\,j\geq1\right\} \qquad R\rightarrow bR\mid b$$

$$S \rightarrow aSa \mid R$$

 $R \rightarrow bR \mid b$

 Although not right-linear, these grammars still follow a rather restricted form...

Context-Free Grammars

- A context-free grammar (CFG) is one in which every production has a <u>single</u> nonterminal symbol on the left-hand side
- A production like $R \rightarrow y$ is permitted
 - It says that R can be replaced with y, regardless of the context of symbols around R in the string
- One like uRz → uyz is not permitted
 - That would be context-sensitive: it says that R can be replaced with y only in a specific context

Context-Free Languages

- A context-free language (CFL) is one that is L(G) for some CFG G
- Every regular language is a CFL
 - Every regular language has a right-linear grammar
 - Every right-linear grammar is a CFG
- But not every CFL is regular
 - $-\{a^nb^n\}$
 - $\{xx^R \mid x \in \{a,b\}^*\}$
 - $-\{a^nb^ja^n \mid n \ge 0, j \ge 1\}$

Language Classes So Far

Outline

- 12.1 Context-Free Grammars and Languages
- 12.2 Writing CFGs
- 12.3 CFG Applications: BNF
- 12.4 Parse Trees
- 12.5 Ambiguity
- 12.6 EBNF

Writing CFGs

- Programming:
 - A program is a finite, structured, mechanical thing that specifies a potentially infinite collection of runtime behaviors
 - You have to imagine how the code you are crafting will unfold when it executes
- Writing grammars:
 - A grammar is a finite, structured, mechanical thing that specifies a potentially infinite language
 - You have to imagine how the productions you are crafting will unfold in the derivations of terminal strings
- Programming and grammar-writing use some of the same mental muscles
- Here follow some techniques and examples...

Regular Languages

- If the language is regular, we already have a technique for constructing a CFG
 - Start with an NFA
 - Convert to a right-linear grammar using the construction from chapter 10

 $L = \{x \in \{0,1\}^* \mid \text{the number of 0s in } x \text{ is divisible by 3}\}$

$$S \rightarrow 1S \mid 0T \mid \varepsilon$$

$$T \rightarrow 1T \mid 0U$$

$$U \rightarrow 1U \mid 0S$$

 $L = \{x \in \{0,1\}^* \mid \text{the number of 0s in } x \text{ is divisible by 3}\}$

- The conversion from NFA to grammar always works
- But it does not always produce a pretty grammar
- It may be possible to design a smaller or otherwise more readable CFG manually:

$$S \rightarrow 1S \mid 0T \mid \varepsilon$$

$$T \rightarrow 1T \mid 0U$$

$$U \rightarrow 1U \mid 0S$$

$$S \to T0T0T0S \mid T$$

$$T \to 1T \mid \varepsilon$$

Balanced Pairs

- CFLs often seem to involve balanced pairs
 - $\{a^nb^n\}$: every a paired with b on the other side
 - $\{xx^R \mid x \in \{a,b\}^*\}$: each symbol in x paired with its mirror image in x^R
 - $\{a^n b^j a^n \mid n \ge 0, j \ge 1\}$: each *a* on the left paired with one on the right
- To get matching pairs, use a recursive production of the form R → xRy
- This generates any number of xs, each of which is matched with a y on the other side

We've seen these before:

$$-\{a^nb^n\}$$

$$S \rightarrow aSb \mid \epsilon$$

$$-\{xx^R\mid x\in\{a,b\}^*\}$$

$$S \rightarrow aSa \mid bSb \mid \varepsilon$$

$$-\left\{a^nb^ja^n\mid n\geq 0,\, j\geq 1\right\}$$

$$S \rightarrow aSa \mid R$$

 $R \rightarrow bR \mid b$

• Notice that they all use the $R \rightarrow xRy$ trick

- $\{a^nb^{3n}\}$
 - Each a on the left can be paired with three bs on the right
 - That gives

$$S \rightarrow aSbbb \mid \epsilon$$

- $\{xy \mid x \in \{a,b\}^*, y \in \{c,d\}^*, \text{ and } |x| = |y|\}$
 - Each symbol on the left (either a or b) can be paired with one on the right (either c or d)
 - That gives

$$S \to XSY \mid \varepsilon$$

$$X \to a \mid b$$

$$Y \to c \mid d$$

Concatenations

- A divide-and-conquer approach is often helpful
- For example, $L = \{a^nb^nc^md^m\}$
 - We can make grammars for $\{a^nb^n\}$ and $\{c^md^m\}$:

$$S_1 \rightarrow aS_1b \mid \varepsilon$$

$$S_1 \rightarrow aS_1b \mid \varepsilon \mid S_2 \rightarrow cS_2d \mid \varepsilon$$

- Now every string in L consists of a string from the first followed by a string from the second
- So combine the two grammars and add a new start symbol:

$$S \to S_1 S_2$$

$$S_1 \to aS_1 b \mid \varepsilon$$

$$S_2 \to cS_2 d \mid \varepsilon$$

Concatenations, In General

- Sometimes a CFL L can be thought of as the concatenation of two languages L_1 and L_2
 - That is, $L = L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
- Then you can write a CFG for L by combining separate CFGs for L₁ and L₂
 - Be careful to keep the two sets of nonterminals separate, so no nonterminal is used in both
 - In particular, use two separate start symbols S_1 and S_2
- The grammar for L consists of all the productions from the two sub-grammars, plus a new start symbol S with the production $S \rightarrow S_1S_2$

Unions, In General

- Sometimes a CFL L can be thought of as the union of two languages $L = L_1 \cup L_2$
- Then you can write a CFG for L by combining separate CFGs for L₁ and L₂
 - Be careful to keep the two sets of nonterminals separate, so no nonterminal is used in both
 - In particular, use two separate start symbols S₁ and S₂
- The grammar for L consists of all the productions from the two sub-grammars, plus a new start symbol S with the production $S \rightarrow S_1 \mid S_2$

 $L = \{z \in \{a,b\}^* \mid z = xx^R \text{ for some } x, \text{ or } |z| \text{ is odd} \}$

• This can be thought of as a union: $L = L_1 \cup L_2$

$$- L_1 = \{xx^R \mid x \in \{a,b\}^*\}$$

$$S_1 \rightarrow aS_1a \mid bS_1b \mid \varepsilon$$

$$-L_2 = \{z \in \{a,b\}^* \mid |z| \text{ is odd}\}$$

$$S_2 \rightarrow XXS_2 \mid X$$

 $X \rightarrow a \mid b$

So a grammar for L is

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow aS_1a \mid bS_1b \mid \varepsilon$$

$$S_2 \rightarrow XXS_2 \mid X$$

$$X \rightarrow a \mid b$$

$$L = \{a^n b^m \mid n \neq m\}$$

- This can be thought of as a union:
 - $-L = \{a^n b^m \mid n < m\} \cup \{a^n b^m \mid n > m\}$
- Each of those two parts can be thought of as a concatenation:
 - $L_{1} = \{a^{n}b^{n}\}\$ $L_{2} = \{b^{i} \mid i > 0\}\$ $L_{3} = \{a^{i} \mid i > 0\}\$ $L = L_{1}L_{2} \cup L_{3}L_{1}$
- The resulting grammar:

$$S \rightarrow S_1 S_2 \mid S_3 S_1$$

$$S_1 \rightarrow aS_1 b \mid \varepsilon$$

$$S_2 \rightarrow bS_2 \mid b$$

$$S_3 \rightarrow aS_3 \mid a$$