
Chapter Thirteen: 
Stack Machines 



Stack Machines 
•  Stacks are ubiquitous in computer programming, and 

they have an important role in formal language as 
well.   

•  A stack machine is a kind of automaton that uses a 
stack for auxiliary data storage.   
–  The size of the stack is unbounded—it never runs out of 

space—and that gives stack machines an edge over finite 
automata.   

–  In effect, stack machines have infinite memory, though they 
must use it in stack order. 

•  The set of languages that can be defined using a 
stack machine is exactly the same as the set of 
languages that can be defined using a CFG: the 
context-free languages. 
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Stacks 

•  A stack machine maintains an unbounded 
stack of symbols 

•  We'll represent these stacks as strings 
•  Left end of the string is the top of the stack 

–  For example, abc is a stack with a on top and c on 
the bottom 

–  Popping abc gives you the symbol a, leaving bc on 
the stack 

–  Pushing b onto abc produces the stack babc 



 read pop push 
 a  c  abc  

 

Stack Machine Moves 

•  A stack machine is an automaton for defining 
languages, but unlike DFA and NFA: no states! 

•  It is specified by a table that shows the moves it is 
allowed to make.  For example: 
 
 
 

•  Meaning: 
–  If the current input symbol is a, and 
–  if the symbol on top of the stack is c, it may make this move: 
–  pop off the c, push abc, and advance to the next input 

symbol 



 read pop push 
 a  c  c  

 

Leaving The Stack Unchanged 

•  Every move pops one symbol off, then pushes a 
string of zero or more symbols on 

•  To specify a move that leaves the stack unchanged, 
you can explicitly push the popped symbol back on: 
 
 
 

•  Meaning: 
–  If the current input symbol is a, and 
–  if the symbol on top of the stack is c, it may make this move: 
–  pop off the c, push it back on, and advance to the next input 

symbol 



 read pop push 
 a  c   

 

Popping The Stack 

•  Every move pushes a string onto the stack 
•  To specify a move that pops but does not push, you 

can explicitly push the empty string: 
 
 

•  Meaning: 
–  If the current input symbol is a, and 
–  if the symbol on top of the stack is c, it may make this move: 
–  pop off the c, push nothing in its place, and advance to the 

next input symbol 



 read pop push 
  c  a b  

 

Moves On No Input 

•  The first column can be ε 
•  Like a ε-transition in an NFA, this specifies a move 

that is made without reading an input symbol 

•  Meaning: 
–  Regardless of what the next input symbol (if any) is, 
–  if the symbol on top of the stack is c, it may make this move: 
–  pop off the c, and push ab in its place 



Stack Machines 

•  A stack machine starts with a stack that contains just 
one symbol, the start symbol S 

•  On each move it can alter its stack, but only as we 
have seen: only in stack order 

•  Like an NFA, a stack machine may be 
nondeterministic: it may have more than one 
sequence of legal moves on a given input 

•  A string is in the language if there is at least one 
sequence of legal moves that reads the entire input 
string and ends with the stack empty 



 read pop push 
1 .   S  a b  
2 .  a  S  e f  
3 .  a  S   

 

Example 

•  Consider input a (and, as always, initial stack S): 
•  Three possible sequences of moves 

–  Move 1 first: no input is read and the stack becomes ab; 
then stuck, rejecting since input not finished and stack not 
empty 

–  Move 2 first: a is read and the stack becomes ef; rejecting 
since stack not empty 

–  Move 3 first: a is read and the stack becomes empty; 
accepting 
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Strategy For {anbn} 

•  We'll make a stack machine that defines the 
language {anbn} 

•  As always, the stack starts with S 
•  Reading the input string from left to right: 

1  For each a you read, pop off the S, push a 1, then push the 
S back on top 

2  In the middle of the string, pop off the S; at this point the 
stack contains just a list of zero or more 1s, one for each a 
that was read 

3  For each b you read, pop a 1 off the stack 
•  This ends with all input read and the stack empty, if 

and only if the input was in {anbn} 



Stack Machine For {anbn} 

•  That strategy again: 
1  For each a you read, pop off the S, push a 1, then push the 

S back on top 
2  In the middle of the string, pop off the S; at this point the 

stack contains just a list of zero or more 1s, one for each a 
that was read 

3  For each b you read, pop a 1 off the stack 

 read pop push 
1 .  a  S  S 1  
2 .   S   
3 .  b  1   

 



•  Accepting aaabbb: 
–  Start:   input: aaabbb; stack: S 
–  Move 1:  input: aaabbb; stack: S1 
–  Move 1:  input: aaabbb; stack: S11 
–  Move 1:  input: aaabbb; stack: S111 
–  Move 2:  input: aaabbb; stack: 111 
–  Move 3:  input: aaabbb; stack: 11 
–  Move 3:  input: aaabbb; stack: 1 
–  Move 3:  input: aaabbb_; stack empty 

 read pop push 
1 .  a  S  S 1  
2 .   S   
3 .  b  1   

 



•  A rejecting sequence for aaabbb: 
–  Start:   input: aaabbb; stack: S 
–  Move 1:  input: aaabbb; stack: S1 
–  Move 2:  input: aaabbb; stack: 1 
–  No legal move from here 

•  But, as we've seen, there is an accepting 
sequence, so aaabbb is in the language 
defined by the stack machine 

•  What happens with string aabbb and aab? 

 read pop push 
1 .  a  S  S 1  
2 .   S   
3 .  b  1   

 



Nondeterminism 

•  This stack machine can pop the S off the top of the 
stack at any time 

•  But there is only one correct time: it must be popped 
off in the middle of the input string 

•  This uses the nondeterminism of stack machines 
•  We can think of these machines as making a guess 

about where the middle of the input is 
•  All the sequences with a wrong guess reject 
•  But the one sequence that makes the right guess 

accepts, and one is all it takes 
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The 4-Tuple 

•  A stack machine M is a 4-tuple M = (Γ, Σ, S, δ) 
–  Γ is the stack alphabet 
–  Σ is the input alphabet 
–  S ∈ Γ is the initial stack symbol 
–  δ ∈ ((Σ∪{ε}) × Γ → P(Γ*) is the transition function 

•  The stack alphabet and the input alphabet may 
or may not have symbols in common 



Transition Function 

•  Type is δ ∈ ((Σ∪{ε}) × Γ → P(Γ*) 
•  That is, in δ(x,y) = Z: 

–  x is an input symbol or ε 
–  y is a stack symbol 
–  The result Z is a set of strings of stack symbols 

•  The result is a set because the stack machine is 
nondeterministic 

•  For a given input symbol x and top-of-stack symbol y, 
there may be more than one move 

•  So, there may be more than one string that can be 
pushed onto the stack in place of y 



Example 

•  M = (Γ, Σ, S, δ) where 
–  Γ = {S, a, b, e, f} 
–  Σ = {a} 
–  δ(ε,S) = {ab} 
δ(a,S) = {ε, ef} 

 read pop push 
1 .   S  a b  
2 .  a  S  e f  
3 .  a  S   

 



Instantaneous Descriptions 

•  At any point in a stack machine's operation, its future 
depends on two things: 
–  That part of the input string that is still to be read 
–  The current contents of the stack 

•  An instantaneous description (ID) for a stack machine 
is a pair (x, y) where: 
–  x ∈ Σ* is the unread part of the input 
–  y ∈ Γ* is the current stack contents 

•  As always, the left end of the string y is considered to 
be the top of the stack 



A One-Move Relation On IDs 

•  We will write I ↦ J if I is an ID and J is ID that 
follows from I after one move of the stack 
machine 

•  Technically: ↦ is a relation on IDs, defined by 
the δ function for the stack machine as follows: 
–  Regular transitions:  (ax, Bz) ↦ (x, yz) if and only if  

y ∈ δ(a,B) 
–  ε-transitions:  (x, Bz) ↦ (x, yz) if and only if  

y ∈ δ(ε,B). 
•  Note no move is possible when stack is empty 



Zero-Or-More-Move Relation 

•  As we did with grammars and NFAs, we 
extend this to a zero-or-more-move ↦* 

•  Technically, ↦* is a relation on IDs, with I ↦* J 
if and only if there is a sequence of zero or 
more  relations that starts with I and ends 
with J 

•  Note this is reflexive by definition: we always 
have I ↦* I by a sequence of zero moves 



A Stack Machine's Language 

•  The language accepted by a stack machine is 
the set of input strings for which there is at 
least one sequence of moves that ends with 
the whole string read and the stack empty 

•  Technically, L(M) = {x ∈ Σ* |  (x, S) ↦* (ε, ε)} 



•  Accepting aaabbb: 
–  Start:   input: aaabbb; stack: S 
–  Move 1:  input: aaabbb; stack: S1 
–  Move 1:  input: aaabbb; stack: S11 
–  Move 1:  input: aaabbb; stack: S111 
–  Move 2:  input: aaabbb; stack: 111 
–  Move 3:  input: aaabbb; stack: 11 
–  Move 3:  input: aaabbb; stack: 1 
–  Move 3:  input: aaabbb_; stack empty 

 read pop push 
1 .  a  S  S 1  
2 .   S   
3 .  b  1   

 

Previous 
Example 



Example, 
Continued 

•  M = ({a,b,S}, {a,b}, S, δ), where 

–  δ(a,S) = {S1}  δ(ε,S) = {ε}  δ(b,1) = {ε} 

•  The accepting sequence of moves for abbbba is 

–  (aaabbb, S) ↦ (aabbb, S1) ↦ (abbb, S11) ↦ (bbb, S111) 
 ↦ (bbb, 111) ↦ (bb, 11) ↦ (b, 1) ↦ (ε, ε) 

•  (aaabbb, S) ↦* (ε, ε) and so aaabbb ∈ L(M) 

 read pop push 
1 .  a  S  S 1  
2 .   S   
3 .  b  1   
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Simulating DFAs 

•  A stack machine can easily simulate any DFA 
–  Use the same input alphabet 
–  Use the states as stack symbols 
–  Use the start state as the start symbol 
–  Use a transition function that keeps exactly one 

symbol on the stack: the DFA's current state 
–  Allow accepting states to be popped; that way, if 

the DFA ends in an accepting state, the stack 
machine can end with an empty stack 



Example 
•  M = ({q0, q1, q2, q3}, {0,1}, q0, δ) 

–  δ(0,q0) = {q0}  δ(1,q0) = {q1} 
–  δ(0,q1) = {q2}  δ(1,q1) = {q3} 
–  δ(0,q2) = {q0}  δ(1,q2) = {q1} 
–  δ(0,q3) = {q2}  δ(1,q3) = {q3} 
–  δ(ε,q2) = {ε}  δ(ε,q3) = {ε} 

•  Accepting sequence for 0110: 
–  (0110, q0) ↦ (110, q0) ↦ (10, q1) ↦ (0, q3) ↦ (ε, q2) ↦ (ε, ε) 

 

q0 q1 
 

0 

q2 
 

q3 
 

0 
0 

1 

1 

1 
1 

0 



DFA To Stack Machine 

•  Such a construction can be used to make a stack 
machine equivalent to any DFA 

•  It can be done for NFAs too 
•  It tells us that the languages definable using a stack 

machine include, at least, all the regular languages 
•  In fact, regular languages are a snap: we have an 

unbounded stack we barely used 
•  We won't give the construction formally, because we 

can do better… 
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From CFG To Stack Machine 

•  A CFG defines a string rewriting process 
•  Start with S and rewrite repeatedly, following 

the rules of the grammar until fully terminal 
•  We want a stack machine that accepts 

exactly those strings that could be generated 
by the given CFG 

•  Our strategy for such a stack machine: 
–  Do a derivation, with the string in the stack  
–  Match the derived string against the input 



Strategy 

•  Two types of moves: 
1. A move for each production X → y 
2.  A move for each terminal a ∈ Σ 

•  The first type lets it do any derivation 
•  The second matches the derived string and the input 
•  Their execution is interlaced:  

–  type 1 when the top symbol is nonterminal 
–  type 2 when the top symbol is terminal 

read pop push 
 X  y  

a a  
 



Example: {xxR | x ∈ {a,b}*} 

•  Derivation for abbbba: 
S ⇒ aSb ⇒ abSba ⇒ abbSbba ⇒ abbbba 

•  Accepting sequence of moves on abbbba: 
(abbbba, S) ↦1 (abbbba, aSa) ↦4 (bbbba, Sa) ↦2 (bbbba, bSba)  ↦5 

(bbba, Sba) ↦2 (bbba, bSbba) ↦5 (bba, Sbba) ↦3 (bba, bba) ↦5  
(ba, ba) ↦5 (a, a) ↦4 (ε, ε) 

S → aSa | bSb | ε 
 read pop push 
1 .   S  aSa  
2 .   S  bSb  
3 .   S   
4 .  a  a   
5 .  b  b   

 



Lemma 13.7 

•  Proof sketch: by construction 
•  Construct M = (V∪Σ, Σ, S, δ), where 

–  for all v ∈ V, δ(ε,v) = {x |  (v→x) ∈ P} 
–  for all a ∈ Σ, δ(a,a) = {ε} 

•  M accepts x if and only if G generates x ie, 
        (x,S) ↦* (ε,ε) if and only if S ⇒* x 

•  L(M) = L(G) 

If G = (V, Σ, S, P) is any context-free grammar, 
there is some stack machine M with L(M) = L(G). 



Summary 

•  We can make a stack machine for every CFL 
•  That's stronger than our demonstration of a 

stack machine for every regular language 
•  So now we know that the stack machines are 

at least as powerful as CFGs for defining 
languages 

•  Are they more powerful?  Are there stack 
machines that define languages that are not 
CFLs? 
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From Stack Machine To CFG 

•  We can't just reverse the previous 
construction, since it produced restricted 
productions 

•  But we can use a similar idea 
•  The executions of the stack machine will be 

exactly simulated by derivations in the CFG 
•  To do this, we'll construct a CFG with one 

production for each move of the stack 
machine 



Lemma 13.8.1 

•  Proof by construction  
•  Assume that Γ∩Σ={} (without loss of generality) 
•  Construct G = (Γ, Σ, S, P), where 

 P = {(A→at) |  A ∈ Γ, a ∈ Σ∪{ε}, and t ∈ δ(a,A)} 
where t ∈ Γ* 

•  Now leftmost derivations in G simulate runs of M: 
 S ⇒* x if and only if (x,S) ↦* (ε,ε) 

for any x ∈ Σ* 
•  So L(G) = L(M) 

If M = (Γ, Σ, S, δ) is any stack machine, there is 
context-free grammar G with L(G) = L(M). 



•  One-to-one correspondence: 
–  Where the stack machine has t ∈ δ(a,A)… 
–  … the grammar has A→at 

•  Accepting sequence on aabb: 
(aabb, S) ↦1 (abb, SB) ↦1 (bb, SBB) ↦2 (bb, BB) ↦3 (b, B) ↦3 (ε, ε) 

•  Derivation of abab: 
S ⇒1 aSB ⇒1 aaSBB ⇒2 aaBB ⇒3 aabB ⇒3 aabb 

 read pop push 
1. a S SB 
2. ε S ε 
3. b B ε 

 

1.  S → aSB 
2.  S → ε 
3.  B → b 



Disjoint Alphabets Assumption 

•  The stack symbols of the stack machine become 
nonterminals in the CFG 

•  The input symbols of the stack machine become 
terminals of the CFG 

•  That's why we need to assume Γ∩Σ={}: symbols in a 
grammar must be either terminal or nonterminal, not 
both 

•  This assumption is without loss of generality because 
we can easily rename stack machine symbols to get 
disjoint alphabets… 



Renaming Example 

•  Given a stack machine with 
intersecting alphabets: 

•  We can rename the stack symbols 
(the pop and push columns only) to 
get disjoint alphabets: 

•  Then use the construction: 

 read pop push 
1 .  a  S  Sbb  
2 .   S   
3 .  b  b   

 
 read pop push 
1 .  a  S  SBB  
2 .   S   
3 .  b  B   

 
S → aSBB | ε 
B → b 



Theorem 13.8 

•  Proof: follows immediately from Lemmas 13.7 
and 13.8.1. 

•  Conclusion: CFGs and stack machines have 
equivalent definitional power 

A language is context free if and only if 
it is L(M) for some stack machine M. 


