Chapter Thirteen: Stack Machines

Stack Machines

- Stacks are ubiquitous in computer programming, and they have an important role in formal language as well.
- A stack machine is a kind of automaton that uses a stack for auxiliary data storage.
- The size of the stack is unbounded-it never runs out of space-and that gives stack machines an edge over finite automata.
- In effect, stack machines have infinite memory, though they must use it in stack order.
- The set of languages that can be defined using a stack machine is exactly the same as the set of languages that can be defined using a CFG: the context-free languages.

Outline

- 13.1 Stack Machine Basics
- 13.2 A Stack Machine for $\left\{a^{n} b^{n}\right\}$
- 13.3 A Stack Machine for $\left\{x x^{R}\right\}$
- 13.4 Stack Machines, Formally Defined
- 13.5 Example: Equal Counts
- 13.6 Example: A Regular Language
- 13.7 A Stack Machine for Every CFG
- 13.8 A CFG For Every Stack Machine

Stacks

- A stack machine maintains an unbounded stack of symbols
- We'll represent these stacks as strings
- Left end of the string is the top of the stack
- For example, abc is a stack with a on top and c on the bottom
- Popping abc gives you the symbol a, leaving $b c$ on the stack
- Pushing b onto abc produces the stack babc

Stack Machine Moves

- A stack machine is an automaton for defining languages, but unlike DFA and NFA: no states!
- It is specified by a table that shows the moves it is allowed to make. For example:

read	pop	push
a	c	$a b c$

- Meaning:
- If the current input symbol is a, and
- if the symbol on top of the stack is c, it may make this move:
- pop off the c, push $a b c$, and advance to the next input symbol

Leaving The Stack Unchanged

- Every move pops one symbol off, then pushes a string of zero or more symbols on
- To specify a move that leaves the stack unchanged, you can explicitly push the popped symbol back on:

read	pop	push
a	c	c

- Meaning:
- If the current input symbol is a, and
- if the symbol on top of the stack is c, it may make this move:
- pop off the c, push it back on, and advance to the next input symbol

Popping The Stack

- Every move pushes a string onto the stack
- To specify a move that pops but does not push, you can explicitly push the empty string:

read	pop	push
a	c	ε

- Meaning:
- If the current input symbol is a, and
- if the symbol on top of the stack is c, it may make this move:
- pop off the c, push nothing in its place, and advance to the next input symbol

Moves On No Input

- The first column can be ε
- Like a ε-transition in an NFA, this specifies a move that is made without reading an input symbol

read	pop	push
ε	c	$a b$

- Meaning:
- Regardless of what the next input symbol (if any) is,
- if the symbol on top of the stack is c, it may make this move:
- pop off the c, and push $a b$ in its place

Stack Machines

- A stack machine starts with a stack that contains just one symbol, the start symbol S
- On each move it can alter its stack, but only as we have seen: only in stack order
- Like an NFA, a stack machine may be nondeterministic: it may have more than one sequence of legal moves on a given input
- A string is in the language if there is at least one sequence of legal moves that reads the entire input string and ends with the stack empty

Example

- Consider input a (and, as always, initial stack S):
- Three possible sequences of moves
- Move 1 first: no input is read and the stack becomes $a b$; then stuck, rejecting since input not finished and stack not empty
- Move 2 first: a is read and the stack becomes ef; rejecting since stack not empty
- Move 3 first: a is read and the stack becomes empty; accepting

Outline

- 13.1 Stack Machine Basics
- 13.2 A Stack Machine for $\left\{a^{n} b^{n}\right\}$
- 13.3 A Stack Machine for $\left\{x x^{R}\right\}$
- 13.4 Stack Machines, Formally Defined
- 13.5 Example: Equal Counts
- 13.6 Example: A Regular Language
- 13.7 A Stack Machine for Every CFG
- 13.8 A CFG For Every Stack Machine

Strategy For $\left\{a^{n} b^{n}\right\}$

- We'll make a stack machine that defines the language $\left\{a^{n} b^{n}\right\}$
- As always, the stack starts with S
- Reading the input string from left to right:

1 For each a you read, pop off the S, push a 1, then push the S back on top
2 In the middle of the string, pop off the S; at this point the stack contains just a list of zero or more 1s, one for each a that was read
3 For each b you read, pop a 1 off the stack

- This ends with all input read and the stack empty, if and only if the input was in $\left\{a^{n} b^{n}\right\}$

\section*{Stack Machine For $\left\{a^{n} b^{n}\right\}$
 | read | pop | push |
| :---: | :---: | :---: |
| 1. | a | S |
| | $S 1$ | |
| 2. ε | S | ε |
| b | 1 | ε |}

- That strategy again:

1 For each a you read, pop off the S, push a 1 , then push the S back on top
2 In the middle of the string, pop off the S; at this point the stack contains just a list of zero or more 1s, one for each a that was read
3 For each byou read, pop a 1 off the stack

- Accepting aaabbb:
- Start:
- Move 1:
- Move 1:
- Move 1:
- Move 2:
- Move 3:
- Move 3:
- Move 3:
input: aaabbb; stack: \underline{S}
input: aaabbb; stack: $\underline{S} 1$
input: aaabbb; stack: $\underline{S} 11$
input: aaabbb; stack: $\underline{S 111}$
input: aaabbb; stack: 111
input: aaabbb; stack: 11
input: aaabbb; stack: 1
input: aaabbb_; stack empty

read	pop	push
1.	a	S
$S 1$		
2.	S	ε
3.	1	ε

- A rejecting sequence for aaabbb:
- Start:
- Move 1: input: aaabbb; stack: $\underline{\text { S1 }}$
- Move 2: input: aaabbb; stack: 1
- No legal move from here
- But, as we've seen, there is an accepting sequence, so aaabbb is in the language defined by the stack machine
- What happens with string aabbb and aab?

Nondeterminism

- This stack machine can pop the S off the top of the stack at any time
- But there is only one correct time: it must be popped off in the middle of the input string
- This uses the nondeterminism of stack machines
- We can think of these machines as making a guess about where the middle of the input is
- All the sequences with a wrong guess reject
- But the one sequence that makes the right guess accepts, and one is all it takes

Outline

- 13.1 Stack Machine Basics
- 13.2 A Stack Machine for $\left\{a^{n} b^{n}\right\}$
- 13.3 A Stack Machine for $\left\{x x^{R}\right\}$
- 13.4 Stack Machines, Formally Defined
- 13.5 Example: Equal Counts
- 13.6 Example: A Regular Language
- 13.7 A Stack Machine for Every CFG
- 13.8 A CFG For Every Stack Machine

The 4-Tuple

- A stack machine M is a 4-tuple $M=(\Gamma, \Sigma, S, \delta)$
$-\Gamma$ is the stack alphabet
$-\Sigma$ is the input alphabet
$-S \in \Gamma$ is the initial stack symbol
$-\delta \in\left((\Sigma \cup\{\varepsilon\}) \times \Gamma \rightarrow P\left(\Gamma^{*}\right)\right.$ is the transition function
- The stack alphabet and the input alphabet may or may not have symbols in common

Transition Function

- Type is $\delta \in\left((\Sigma \cup\{\varepsilon\}) \times \Gamma \rightarrow P\left(\Gamma^{*}\right)\right.$
- That is, in $\delta(x, y)=Z$:
- x is an input symbol or ε
- y is a stack symbol
- The result Z is a set of strings of stack symbols
- The result is a set because the stack machine is nondeterministic
- For a given input symbol x and top-of-stack symbol y, there may be more than one move
- So, there may be more than one string that can be pushed onto the stack in place of y

- $M=(\Gamma, \Sigma, S, \delta)$ where

$$
\begin{aligned}
-\Gamma & =\{S, a, b, e, f\} \\
-\Sigma & =\{a\} \\
-\delta(\varepsilon, S) & =\{a b\} \\
& \delta(a, S)=\{\varepsilon, e f\}
\end{aligned}
$$

Instantaneous Descriptions

- At any point in a stack machine's operation, its future depends on two things:
- That part of the input string that is still to be read
- The current contents of the stack
- An instantaneous description (ID) for a stack machine is a pair (x, y) where:
$-x \in \Sigma^{*}$ is the unread part of the input
$-y \in \Gamma^{*}$ is the current stack contents
- As always, the left end of the string y is considered to be the top of the stack

A One-Move Relation On IDs

- We will write $I \mapsto J$ if I is an ID and J is ID that follows from I after one move of the stack machine
- Technically: \mapsto is a relation on IDs, defined by the δ function for the stack machine as follows:
- Regular transitions: $(a x, B z) \mapsto(x, y z)$ if and only if $y \in \delta(a, B)$
- ε-transitions: $(x, B z) \mapsto(x, y z)$ if and only if $y \in \delta(\varepsilon, B)$.
- Note no move is possible when stack is empty

Zero-Or-More-Move Relation

- As we did with grammars and NFAs, we extend this to a zero-or-more-move \mapsto^{*}
- Technically, \mapsto^{*} is a relation on IDs, with $/ \mapsto^{*} J$ if and only if there is a sequence of zero or more relations that starts with I and ends with J
- Note this is reflexive by definition: we always have $/ \mapsto{ }^{*} I$ by a sequence of zero moves

A Stack Machine's Language

- The language accepted by a stack machine is the set of input strings for which there is at least one sequence of moves that ends with the whole string read and the stack empty
- Technically, $L(M)=\left\{x \in \Sigma^{*} \mid(x, S) \mapsto^{*}(\varepsilon, \varepsilon)\right\}$

Previous
Example

read		push
1. a	S	S 1
2. ε	S	ε
3. b	1	ε

- Accepting aaabbb:
- Start:
- Move 1:
- Move 1:
- Move 1:
- Move 2:
- Move 3:
- Move 3:
- Move 3:
input: aaabbb; stack: \underline{S}
input: aaabbb; stack: $\underline{S} 1$
input: aaabbb; stack: $\underline{S} 11$
input: aaabbb; stack: $\underline{S 111}$
input: aaabbb; stack: 111
input: aaabbb; stack: 11
input: aaabbb; stack: 1
input: aaabbb_; stack empty

Example, Continued

- $M=(\{a, b, S\},\{a, b\}, S, \delta)$, where
$-\delta(a, S)=\{S 1\} \quad \delta(\varepsilon, S)=\{\varepsilon\} \quad \delta(b, 1)=\{\varepsilon\}$
- The accepting sequence of moves for $a b b b b a$ is
- (aaabbb, S) $\mapsto(a a b b b, S 1) \mapsto(a b b b, S 11) \mapsto(b b b, S 111)$

$$
\mapsto(b b b, 111) \mapsto(b b, 11) \mapsto(b, 1) \mapsto(\varepsilon, \varepsilon)
$$

- (aaabbb, S) $\mapsto^{*}(\varepsilon, \varepsilon)$ and so aaabbb $\in L(M)$

Outline

- 13.1 Stack Machine Basics
- 13.2 A Stack Machine for $\left\{a^{n} b^{n}\right\}$
- 13.3 A Stack Machine for $\left\{x x^{R}\right\}$
- 13.4 Stack Machines, Formally Defined
- 13.5 Example: Equal Counts
- 13.6 Example: A Regular Language
- 13.7 A Stack Machine for Every CFG
- 13.8 A CFG For Every Stack Machine

Simulating DFAs

- A stack machine can easily simulate any DFA
- Use the same input alphabet
- Use the states as stack symbols
- Use the start state as the start symbol
- Use a transition function that keeps exactly one symbol on the stack: the DFA's current state
- Allow accepting states to be popped; that way, if the DFA ends in an accepting state, the stack machine can end with an empty stack

Example

- $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, q_{0}, \delta\right)$

$$
\begin{array}{ll}
-\delta\left(0, q_{0}\right)=\left\{q_{0}\right\} & \delta\left(1, q_{0}\right)=\left\{q_{1}\right\} \\
-\delta\left(0, q_{1}\right)=\left\{q_{2}\right\} & \delta\left(1, q_{1}\right)=\left\{q_{3}\right\} \\
-\delta\left(0, q_{2}\right)=\left\{q_{0}\right\} & \delta\left(1, q_{2}\right)=\left\{q_{1}\right\} \\
-\delta\left(0, q_{3}\right)=\left\{q_{2}\right\} & \delta\left(1, q_{3}\right)=\left\{q_{3}\right\} \\
-\delta\left(\varepsilon, q_{2}\right)=\{\varepsilon\} & \delta\left(\varepsilon, q_{3}\right)=\{\varepsilon\}
\end{array}
$$

- Accepting sequence for 0110:
$-\left(0110, q_{0}\right) \mapsto\left(110, q_{0}\right) \mapsto\left(10, q_{1}\right) \mapsto\left(0, q_{3}\right) \mapsto\left(\varepsilon, q_{2}\right) \mapsto(\varepsilon, \varepsilon)$

DFA To Stack Machine

- Such a construction can be used to make a stack machine equivalent to any DFA
- It can be done for NFAs too
- It tells us that the languages definable using a stack machine include, at least, all the regular languages
- In fact, regular languages are a snap: we have an unbounded stack we barely used
- We won't give the construction formally, because we can do better...

Outline

- 13.1 Stack Machine Basics
- 13.2 A Stack Machine for $\left\{a^{n} b^{n}\right\}$
- 13.3 A Stack Machine for $\left\{x x^{R}\right\}$
- 13.4 Stack Machines, Formally Defined
- 13.5 Example: Equal Counts
- 13.6 Example: A Regular Language
- 13.7 A Stack Machine for Every CFG
- 13.8 A CFG For Every Stack Machine

From CFG To Stack Machine

- A CFG defines a string rewriting process
- Start with S and rewrite repeatedly, following the rules of the grammar until fully terminal
- We want a stack machine that accepts exactly those strings that could be generated by the given CFG
- Our strategy for such a stack machine:
- Do a derivation, with the string in the stack
- Match the derived string against the input

strategy

- Two types of moves:

1. A move for each production $X \rightarrow y$
2. A move for each terminal $a \in \Sigma$

- The first type lets it do any derivation

- The second matches the derived string and the input
- Their execution is interlaced:
- type 1 when the top symbol is nonterminal
- type 2 when the top symbol is terminal

Example: $\left\{x x^{R} \mid x \in\{a, b\}^{*}\right\}$

$S \rightarrow a S a|b S b| \varepsilon$

- Derivation for abbbba:

$$
S \Rightarrow a S b \Rightarrow a b S b a \Rightarrow a b b S b b a \Rightarrow a b b b b a
$$

- Accepting sequence of moves on $a b b b b a$:
$(a b b b b a, S) \mapsto_{1}(a b b b b a, a S a) \mapsto_{4}(b b b b a, S a) \mapsto_{2}(b b b b a, b S b a) \mapsto_{5}$ $(b b b a, S b a) \mapsto_{2}(b b b a, b S b b a) \mapsto_{5}(b b a, S b b a) \mapsto_{3}(b b a, b b a) \mapsto_{5}$ $(b a, b a) \mapsto_{5}(a, a) \mapsto_{4}(\varepsilon, \varepsilon)$

Lemma 13.7

If $G=(V, \Sigma, S, P)$ is any context-free grammar, there is some stack machine M with $L(M)=L(G)$.

- Proof sketch: by construction
- Construct $M=(V \cup \Sigma, \Sigma, S, \delta)$, where
- for all $v \in V, \delta(\varepsilon, v)=\{x \mid(v \rightarrow x) \in P\}$
- for all $a \in \Sigma, \delta(a, a)=\{\varepsilon\}$
- M accepts x if and only if G generates x ie, $(x, S) \mapsto^{*}(\varepsilon, \varepsilon)$ if and only if $S \Rightarrow^{*} x$
- $L(M)=L(G)$

Summary

- We can make a stack machine for every CFL
- That's stronger than our demonstration of a stack machine for every regular language
- So now we know that the stack machines are at least as powerful as CFGs for defining languages
- Are they more powerful? Are there stack machines that define languages that are not CFLs?

Outline

- 13.1 Stack Machine Basics
- 13.2 A Stack Machine for $\left\{a^{n} b^{n}\right\}$
- 13.3 A Stack Machine for $\left\{x x^{R}\right\}$
- 13.4 Stack Machines, Formally Defined
- 13.5 Example: Equal Counts
- 13.6 Example: A Regular Language
- 13.7 A Stack Machine for Every CFG
- 13.8 A CFG For Every Stack Machine

From Stack Machine To CFG

- We can't just reverse the previous construction, since it produced restricted productions
- But we can use a similar idea
- The executions of the stack machine will be exactly simulated by derivations in the CFG
- To do this, we'll construct a CFG with one production for each move of the stack machine

Lemma 13.8.1

If $M=(\Gamma, \Sigma, S, \delta)$ is any stack machine, there is context-free grammar G with $L(G)=L(M)$.

- Proof by construction
- Assume that $\Gamma \cap \Sigma=\{ \}$ (without loss of generality)
- Construct $G=(\Gamma, \Sigma, S, P)$, where

$$
P=\{(A \rightarrow \mathrm{a} t) \mid A \in \Gamma, \mathrm{a} \in \Sigma \cup\{\varepsilon\}, \text { and } t \in \delta(\mathrm{a}, A)\}
$$

where $t \in \Gamma^{*}$

- Now leftmost derivations in G simulate runs of M :

$$
S \Rightarrow^{*} x \text { if and only if }(x, S) \mapsto^{*}(\varepsilon, \varepsilon)
$$

for any $x \in \Sigma^{*}$

- So $L(G)=L(M)$

1. $S \rightarrow a S B$
 2. $S \rightarrow \varepsilon$
 3. $\mathrm{B} \rightarrow b$

- One-to-one correspondence:
- Where the stack machine has $t \in \delta(a, A)$...
- ... the grammar has $A \rightarrow a t$
- Accepting sequence on $a a b b$: $(a a b b, S) \mapsto_{1}(a b b, S B) \mapsto_{1}(b b, S B B) \mapsto_{2}(b b, B B) \mapsto_{3}(b, \mathrm{~B}) \mapsto_{3}(\varepsilon, \varepsilon)$
- Derivation of $a b a b:$

$$
S \Rightarrow_{1} a S B \Rightarrow_{1} \text { aaSBB } \Rightarrow_{2} \text { aaBB } \Rightarrow_{3} \text { aab } B \Rightarrow_{3} \text { aabb }
$$

Disjoint Alphabets Assumption

- The stack symbols of the stack machine become nonterminals in the CFG
- The input symbols of the stack machine become terminals of the CFG
- That's why we need to assume $\Gamma \cap \Sigma=\{ \}$: symbols in a grammar must be either terminal or nonterminal, not both
- This assumption is without loss of generality because we can easily rename stack machine symbols to get disjoint alphabets...

Renaming Example

- Given a stack machine with intersecting alphabets:

- We can rename the stack symbols (the pop and push columns only) to get disjoint alphabets:
- Then use the construction:

read	pop	push
1.	a	S
2 $B B$		
3.	.	S
	B	ε

$$
\begin{aligned}
& S \rightarrow a S B B \mid \varepsilon \\
& B \rightarrow b
\end{aligned}
$$

Theorem 13.8

A language is context free if and only if it is $L(M)$ for some stack machine M.

- Proof: follows immediately from Lemmas 13.7 and 13.8.1.
- Conclusion: CFGs and stack machines have equivalent definitional power

