
Chapter Thirteen:
Stack Machines

Stack Machines
•  Stacks are ubiquitous in computer programming, and

they have an important role in formal language as
well.

•  A stack machine is a kind of automaton that uses a
stack for auxiliary data storage.
–  The size of the stack is unbounded—it never runs out of

space—and that gives stack machines an edge over finite
automata.

–  In effect, stack machines have infinite memory, though they
must use it in stack order.

•  The set of languages that can be defined using a
stack machine is exactly the same as the set of
languages that can be defined using a CFG: the
context-free languages.

Outline

•  13.1 Stack Machine Basics
•  13.2 A Stack Machine for {anbn}
•  13.3 A Stack Machine for {xxR}
•  13.4 Stack Machines, Formally Defined
•  13.5 Example: Equal Counts
•  13.6 Example: A Regular Language
•  13.7 A Stack Machine for Every CFG
•  13.8 A CFG For Every Stack Machine

Stacks

•  A stack machine maintains an unbounded
stack of symbols

•  We'll represent these stacks as strings
•  Left end of the string is the top of the stack

–  For example, abc is a stack with a on top and c on
the bottom

–  Popping abc gives you the symbol a, leaving bc on
the stack

–  Pushing b onto abc produces the stack babc

 read pop push
 a c abc

Stack Machine Moves

•  A stack machine is an automaton for defining
languages, but unlike DFA and NFA: no states!

•  It is specified by a table that shows the moves it is
allowed to make. For example:

•  Meaning:
–  If the current input symbol is a, and
–  if the symbol on top of the stack is c, it may make this move:
–  pop off the c, push abc, and advance to the next input

symbol

 read pop push
 a c c

Leaving The Stack Unchanged

•  Every move pops one symbol off, then pushes a
string of zero or more symbols on

•  To specify a move that leaves the stack unchanged,
you can explicitly push the popped symbol back on:

•  Meaning:
–  If the current input symbol is a, and
–  if the symbol on top of the stack is c, it may make this move:
–  pop off the c, push it back on, and advance to the next input

symbol

 read pop push
 a c

Popping The Stack

•  Every move pushes a string onto the stack
•  To specify a move that pops but does not push, you

can explicitly push the empty string:

•  Meaning:
–  If the current input symbol is a, and
–  if the symbol on top of the stack is c, it may make this move:
–  pop off the c, push nothing in its place, and advance to the

next input symbol

 read pop push
 c a b

Moves On No Input

•  The first column can be ε
•  Like a ε-transition in an NFA, this specifies a move

that is made without reading an input symbol

•  Meaning:
–  Regardless of what the next input symbol (if any) is,
–  if the symbol on top of the stack is c, it may make this move:
–  pop off the c, and push ab in its place

Stack Machines

•  A stack machine starts with a stack that contains just
one symbol, the start symbol S

•  On each move it can alter its stack, but only as we
have seen: only in stack order

•  Like an NFA, a stack machine may be
nondeterministic: it may have more than one
sequence of legal moves on a given input

•  A string is in the language if there is at least one
sequence of legal moves that reads the entire input
string and ends with the stack empty

 read pop push
1 . S a b
2 . a S e f
3 . a S

Example

•  Consider input a (and, as always, initial stack S):
•  Three possible sequences of moves

–  Move 1 first: no input is read and the stack becomes ab;
then stuck, rejecting since input not finished and stack not
empty

–  Move 2 first: a is read and the stack becomes ef; rejecting
since stack not empty

–  Move 3 first: a is read and the stack becomes empty;
accepting

Outline

•  13.1 Stack Machine Basics
•  13.2 A Stack Machine for {anbn}
•  13.3 A Stack Machine for {xxR}
•  13.4 Stack Machines, Formally Defined
•  13.5 Example: Equal Counts
•  13.6 Example: A Regular Language
•  13.7 A Stack Machine for Every CFG
•  13.8 A CFG For Every Stack Machine

Strategy For {anbn}

•  We'll make a stack machine that defines the
language {anbn}

•  As always, the stack starts with S
•  Reading the input string from left to right:

1  For each a you read, pop off the S, push a 1, then push the
S back on top

2  In the middle of the string, pop off the S; at this point the
stack contains just a list of zero or more 1s, one for each a
that was read

3  For each b you read, pop a 1 off the stack
•  This ends with all input read and the stack empty, if

and only if the input was in {anbn}

Stack Machine For {anbn}

•  That strategy again:
1  For each a you read, pop off the S, push a 1, then push the

S back on top
2  In the middle of the string, pop off the S; at this point the

stack contains just a list of zero or more 1s, one for each a
that was read

3  For each b you read, pop a 1 off the stack

 read pop push
1 . a S S 1
2 . S
3 . b 1

•  Accepting aaabbb:
–  Start: input: aaabbb; stack: S
–  Move 1: input: aaabbb; stack: S1
–  Move 1: input: aaabbb; stack: S11
–  Move 1: input: aaabbb; stack: S111
–  Move 2: input: aaabbb; stack: 111
–  Move 3: input: aaabbb; stack: 11
–  Move 3: input: aaabbb; stack: 1
–  Move 3: input: aaabbb_; stack empty

 read pop push
1 . a S S 1
2 . S
3 . b 1

•  A rejecting sequence for aaabbb:
–  Start: input: aaabbb; stack: S
–  Move 1: input: aaabbb; stack: S1
–  Move 2: input: aaabbb; stack: 1
–  No legal move from here

•  But, as we've seen, there is an accepting
sequence, so aaabbb is in the language
defined by the stack machine

•  What happens with string aabbb and aab?

 read pop push
1 . a S S 1
2 . S
3 . b 1

Nondeterminism

•  This stack machine can pop the S off the top of the
stack at any time

•  But there is only one correct time: it must be popped
off in the middle of the input string

•  This uses the nondeterminism of stack machines
•  We can think of these machines as making a guess

about where the middle of the input is
•  All the sequences with a wrong guess reject
•  But the one sequence that makes the right guess

accepts, and one is all it takes

Outline

•  13.1 Stack Machine Basics
•  13.2 A Stack Machine for {anbn}
•  13.3 A Stack Machine for {xxR}
•  13.4 Stack Machines, Formally Defined
•  13.5 Example: Equal Counts
•  13.6 Example: A Regular Language
•  13.7 A Stack Machine for Every CFG
•  13.8 A CFG For Every Stack Machine

The 4-Tuple

•  A stack machine M is a 4-tuple M = (Γ, Σ, S, δ)
–  Γ is the stack alphabet
–  Σ is the input alphabet
–  S ∈ Γ is the initial stack symbol
–  δ ∈ ((Σ∪{ε}) × Γ → P(Γ*) is the transition function

•  The stack alphabet and the input alphabet may
or may not have symbols in common

Transition Function

•  Type is δ ∈ ((Σ∪{ε}) × Γ → P(Γ*)
•  That is, in δ(x,y) = Z:

–  x is an input symbol or ε
–  y is a stack symbol
–  The result Z is a set of strings of stack symbols

•  The result is a set because the stack machine is
nondeterministic

•  For a given input symbol x and top-of-stack symbol y,
there may be more than one move

•  So, there may be more than one string that can be
pushed onto the stack in place of y

Example

•  M = (Γ, Σ, S, δ) where
–  Γ = {S, a, b, e, f}
–  Σ = {a}
–  δ(ε,S) = {ab}
δ(a,S) = {ε, ef}

 read pop push
1 . S a b
2 . a S e f
3 . a S

Instantaneous Descriptions

•  At any point in a stack machine's operation, its future
depends on two things:
–  That part of the input string that is still to be read
–  The current contents of the stack

•  An instantaneous description (ID) for a stack machine
is a pair (x, y) where:
–  x ∈ Σ* is the unread part of the input
–  y ∈ Γ* is the current stack contents

•  As always, the left end of the string y is considered to
be the top of the stack

A One-Move Relation On IDs

•  We will write I ↦ J if I is an ID and J is ID that
follows from I after one move of the stack
machine

•  Technically: ↦ is a relation on IDs, defined by
the δ function for the stack machine as follows:
–  Regular transitions: (ax, Bz) ↦ (x, yz) if and only if

y ∈ δ(a,B)
–  ε-transitions: (x, Bz) ↦ (x, yz) if and only if

y ∈ δ(ε,B).
•  Note no move is possible when stack is empty

Zero-Or-More-Move Relation

•  As we did with grammars and NFAs, we
extend this to a zero-or-more-move ↦*

•  Technically, ↦* is a relation on IDs, with I ↦* J
if and only if there is a sequence of zero or
more relations that starts with I and ends
with J

•  Note this is reflexive by definition: we always
have I ↦* I by a sequence of zero moves

A Stack Machine's Language

•  The language accepted by a stack machine is
the set of input strings for which there is at
least one sequence of moves that ends with
the whole string read and the stack empty

•  Technically, L(M) = {x ∈ Σ* | (x, S) ↦* (ε, ε)}

•  Accepting aaabbb:
–  Start: input: aaabbb; stack: S
–  Move 1: input: aaabbb; stack: S1
–  Move 1: input: aaabbb; stack: S11
–  Move 1: input: aaabbb; stack: S111
–  Move 2: input: aaabbb; stack: 111
–  Move 3: input: aaabbb; stack: 11
–  Move 3: input: aaabbb; stack: 1
–  Move 3: input: aaabbb_; stack empty

 read pop push
1 . a S S 1
2 . S
3 . b 1

Previous
Example

Example,
Continued

•  M = ({a,b,S}, {a,b}, S, δ), where

–  δ(a,S) = {S1} δ(ε,S) = {ε} δ(b,1) = {ε}

•  The accepting sequence of moves for abbbba is

–  (aaabbb, S) ↦ (aabbb, S1) ↦ (abbb, S11) ↦ (bbb, S111)
 ↦ (bbb, 111) ↦ (bb, 11) ↦ (b, 1) ↦ (ε, ε)

•  (aaabbb, S) ↦* (ε, ε) and so aaabbb ∈ L(M)

 read pop push
1 . a S S 1
2 . S
3 . b 1

Outline

•  13.1 Stack Machine Basics
•  13.2 A Stack Machine for {anbn}
•  13.3 A Stack Machine for {xxR}
•  13.4 Stack Machines, Formally Defined
•  13.5 Example: Equal Counts
•  13.6 Example: A Regular Language
•  13.7 A Stack Machine for Every CFG
•  13.8 A CFG For Every Stack Machine

Simulating DFAs

•  A stack machine can easily simulate any DFA
–  Use the same input alphabet
–  Use the states as stack symbols
–  Use the start state as the start symbol
–  Use a transition function that keeps exactly one

symbol on the stack: the DFA's current state
–  Allow accepting states to be popped; that way, if

the DFA ends in an accepting state, the stack
machine can end with an empty stack

Example
•  M = ({q0, q1, q2, q3}, {0,1}, q0, δ)

–  δ(0,q0) = {q0} δ(1,q0) = {q1}
–  δ(0,q1) = {q2} δ(1,q1) = {q3}
–  δ(0,q2) = {q0} δ(1,q2) = {q1}
–  δ(0,q3) = {q2} δ(1,q3) = {q3}
–  δ(ε,q2) = {ε} δ(ε,q3) = {ε}

•  Accepting sequence for 0110:
–  (0110, q0) ↦ (110, q0) ↦ (10, q1) ↦ (0, q3) ↦ (ε, q2) ↦ (ε, ε)

q0 q1

0

q2

q3

0
0

1

1

1
1

0

DFA To Stack Machine

•  Such a construction can be used to make a stack
machine equivalent to any DFA

•  It can be done for NFAs too
•  It tells us that the languages definable using a stack

machine include, at least, all the regular languages
•  In fact, regular languages are a snap: we have an

unbounded stack we barely used
•  We won't give the construction formally, because we

can do better…

Outline

•  13.1 Stack Machine Basics
•  13.2 A Stack Machine for {anbn}
•  13.3 A Stack Machine for {xxR}
•  13.4 Stack Machines, Formally Defined
•  13.5 Example: Equal Counts
•  13.6 Example: A Regular Language
•  13.7 A Stack Machine for Every CFG
•  13.8 A CFG For Every Stack Machine

From CFG To Stack Machine

•  A CFG defines a string rewriting process
•  Start with S and rewrite repeatedly, following

the rules of the grammar until fully terminal
•  We want a stack machine that accepts

exactly those strings that could be generated
by the given CFG

•  Our strategy for such a stack machine:
–  Do a derivation, with the string in the stack
–  Match the derived string against the input

Strategy

•  Two types of moves:
1. A move for each production X → y
2. A move for each terminal a ∈ Σ

•  The first type lets it do any derivation
•  The second matches the derived string and the input
•  Their execution is interlaced:

–  type 1 when the top symbol is nonterminal
–  type 2 when the top symbol is terminal

read pop push
 X y

a a

Example: {xxR | x ∈ {a,b}*}

•  Derivation for abbbba:
S ⇒ aSb ⇒ abSba ⇒ abbSbba ⇒ abbbba

•  Accepting sequence of moves on abbbba:
(abbbba, S) ↦1 (abbbba, aSa) ↦4 (bbbba, Sa) ↦2 (bbbba, bSba) ↦5

(bbba, Sba) ↦2 (bbba, bSbba) ↦5 (bba, Sbba) ↦3 (bba, bba) ↦5
(ba, ba) ↦5 (a, a) ↦4 (ε, ε)

S → aSa | bSb | ε
 read pop push
1 . S aSa
2 . S bSb
3 . S
4 . a a
5 . b b

Lemma 13.7

•  Proof sketch: by construction
•  Construct M = (V∪Σ, Σ, S, δ), where

–  for all v ∈ V, δ(ε,v) = {x | (v→x) ∈ P}
–  for all a ∈ Σ, δ(a,a) = {ε}

•  M accepts x if and only if G generates x ie,
 (x,S) ↦* (ε,ε) if and only if S ⇒* x

•  L(M) = L(G)

If G = (V, Σ, S, P) is any context-free grammar,
there is some stack machine M with L(M) = L(G).

Summary

•  We can make a stack machine for every CFL
•  That's stronger than our demonstration of a

stack machine for every regular language
•  So now we know that the stack machines are

at least as powerful as CFGs for defining
languages

•  Are they more powerful? Are there stack
machines that define languages that are not
CFLs?

Outline

•  13.1 Stack Machine Basics
•  13.2 A Stack Machine for {anbn}
•  13.3 A Stack Machine for {xxR}
•  13.4 Stack Machines, Formally Defined
•  13.5 Example: Equal Counts
•  13.6 Example: A Regular Language
•  13.7 A Stack Machine for Every CFG
•  13.8 A CFG For Every Stack Machine

From Stack Machine To CFG

•  We can't just reverse the previous
construction, since it produced restricted
productions

•  But we can use a similar idea
•  The executions of the stack machine will be

exactly simulated by derivations in the CFG
•  To do this, we'll construct a CFG with one

production for each move of the stack
machine

Lemma 13.8.1

•  Proof by construction
•  Assume that Γ∩Σ={} (without loss of generality)
•  Construct G = (Γ, Σ, S, P), where

 P = {(A→at) | A ∈ Γ, a ∈ Σ∪{ε}, and t ∈ δ(a,A)}
where t ∈ Γ*

•  Now leftmost derivations in G simulate runs of M:
 S ⇒* x if and only if (x,S) ↦* (ε,ε)

for any x ∈ Σ*
•  So L(G) = L(M)

If M = (Γ, Σ, S, δ) is any stack machine, there is
context-free grammar G with L(G) = L(M).

•  One-to-one correspondence:
–  Where the stack machine has t ∈ δ(a,A)…
–  … the grammar has A→at

•  Accepting sequence on aabb:
(aabb, S) ↦1 (abb, SB) ↦1 (bb, SBB) ↦2 (bb, BB) ↦3 (b, B) ↦3 (ε, ε)

•  Derivation of abab:
S ⇒1 aSB ⇒1 aaSBB ⇒2 aaBB ⇒3 aabB ⇒3 aabb

 read pop push
1. a S SB
2. ε S ε
3. b B ε

1. S → aSB
2. S → ε
3. B → b

Disjoint Alphabets Assumption

•  The stack symbols of the stack machine become
nonterminals in the CFG

•  The input symbols of the stack machine become
terminals of the CFG

•  That's why we need to assume Γ∩Σ={}: symbols in a
grammar must be either terminal or nonterminal, not
both

•  This assumption is without loss of generality because
we can easily rename stack machine symbols to get
disjoint alphabets…

Renaming Example

•  Given a stack machine with
intersecting alphabets:

•  We can rename the stack symbols
(the pop and push columns only) to
get disjoint alphabets:

•  Then use the construction:

 read pop push
1 . a S Sbb
2 . S
3 . b b

 read pop push
1 . a S SBB
2 . S
3 . b B

S → aSBB | ε
B → b

Theorem 13.8

•  Proof: follows immediately from Lemmas 13.7
and 13.8.1.

•  Conclusion: CFGs and stack machines have
equivalent definitional power

A language is context free if and only if
it is L(M) for some stack machine M.

