Chapter Thirteen:
Stack Machines

Stack Machines

« Stacks are ubiquitous in computer programming, and
they have an important role in formal language as
well.

A stack machine is a kind of automaton that uses a
stack for auxiliary data storage.

— The size of the stack is unbounded—it never runs out of
space—and that gives stack machines an edge over finite
automata.

— In effect, stack machines have infinite memory, though they
must use it in stack order.

« The set of languages that can be defined using a
stack machine is exactly the same as the set of
languages that can be defined using a CFG: the
context-free languages.

Outline

13.1 Stack Machine Basics

13.2 A Stack Machine for {a"b"}

13.3 A Stack Machine for {xx~}

13.4 Stack Machines, Formally Defined
13.5 Example: Equal Counts

13.6 Example: A Regular Language
13.7 A Stack Machine for Every CFG
13.8 A CFG For Every Stack Machine

Stacks

A stack machine maintains an unbounded
stack of symbols

 We'll represent these stacks as strings

 Left end of the string is the top of the stack

— For example, abc is a stack with a on top and ¢ on
the bottom

— Popping abc gives you the symbol a, leaving bc on
the stack

— Pushing b onto abc produces the stack babc

Stack Machine Moves

« A stack machine is an automaton for defining
languages, but unlike DFA and NFA: no states!

It is specified by a table that shows the moves it is
allowed to make. For example:

read |pop

push

a C

abc

* Meaning:

— |If the current input symbol is a, and

— if the symbol on top of the stack is ¢, it may make this move:
— pop off the ¢, push abc, and advance to the next input

symbol

Leaving The Stack Unchanged

« Every move pops one symbol off, then pushes a
string of zero or more symbols on

* To specify a move that leaves the stack unchanged,
you can explicitly push the popped symbol back on:

read |pop |push
a | c C

* Meaning:
— If the current input symbol is a, and
— if the symbol on top of the stack is ¢, it may make this move:
— pop off the ¢, push it back on, and advance to the next input

symbol

Popping The Stack

* Every move pushes a string onto the stack

« To specify a move that pops but does not push, you
can explicitly push the empty string:

read |pop |push
a | c €

* Meaning:
— If the current input symbol is a, and
— if the symbol on top of the stack is ¢, it may make this move:

— pop off the ¢, push nothing in its place, and advance to the
next input symbol

Moves On

 The first column can be ¢

No Input

« Like a e-transition in an NFA, this specifies a move
that is made without reading an input symbol

read |pop

push

€ C

ab

* Meaning:

— Regardless of what the next input symbol (if any) is,
— if the symbol on top of the stack is ¢, it may make this move:
— pop off the ¢, and push ab in its place

Stack Machines

A stack machine starts with a stack that contains just
one symbol, the start symbol S

On each move it can alter its stack, but only as we
have seen: only in stack order

Like an NFA, a stack machine may be
nondeterministic: it may have more than one
sequence of legal moves on a given input

A string is in the language if there is at least one
sequence of legal moves that reads the entire input
string and ends with the stack empty

Example

read |pop |push
1. ¢ | S| ab
2. a | S| ef
3. a | S| €

« Consider input a (and, as always, initial stack S):

« Three possible sequences of moves

— Move 1 first: no input is read and the stack becomes ab;
then stuck, rejecting since input not finished and stack not
empty

— Move 2 first: a is read and the stack becomes ef; rejecting
since stack not empty

— Move 3 first: a is read and the stack becomes empty;
accepting

Outline

13.1 Stack Machine Basics

13.2 A Stack Machine for {a"b"}

13.3 A Stack Machine for {xx~}

13.4 Stack Machines, Formally Defined
13.5 Example: Equal Counts

13.6 Example: A Regular Language
13.7 A Stack Machine for Every CFG
13.8 A CFG For Every Stack Machine

Strategy For {a"b"}

We'll make a stack machine that defines the
language {a"b"}
As always, the stack starts with S

Reading the input string from left to right:

1 For each a you read, pop off the S, push a 1, then push the
S back on top

2 In the middle of the string, pop off the S; at this point the
stack contains just a list of zero or more 1s, one for each a
that was read

3 For each b you read, pop a 1 off the stack

This ends with all input read and the stack empty, if
and only if the input was in {a"b"}

Stack Machine For {a"b"}

read |pop |push
1. a | S| S1
2. ¢ | S| ¢
3. b 1 €

 That strategy again:
For each a you read, pop off the S, push a 1, then push the

1

2

S back on top

In the middle of the string, pop off the S; at this point the
stack contains just a list of zero or more 1s, one for each a

that was read

For each b you read, pop a 1 off the stack

1.
2.
3.

read |pop |push
a | S| S1
€ S €
b | 1 €

» Accepting aaabbb:

— Start:

— Move 1:
— Move 1:
— Move 1:
— Move 2:
— Move 3:
— Move 3:
— Move 3:

iInput:
input:
input:
input:
iInput:
input:
input:
input:

aaabbb; stack: S

aaabbb; stack: S1
aaabbb; stack: S11
aaabbb; stack: S111
aaabbb; stack: 111
aaabbb; stack: 11
aaabbb; stack: 1
aaabbb_; stack empty

read |pop |push

1. a | S| S1

2. ¢ | S| ¢

3. b | 1 €

* A rejecting sequence for aaabbb:

— Start: input: aaabbb; stack: S
— Move 1: input: aaabbb; stack: S1
— Move 2: input: aaabbb; stack: 1

— No legal move from here

* But, as we've seen, there is an accepting
sequence, so aaabbb is in the language
defined by the stack machine

* What happens with string aabbb and aab?

Nondeterminism

This stack machine can pop the S off the top of the
stack at any time

But there is only one correct time: it must be popped
off in the middle of the input string

This uses the nondeterminism of stack machines

We can think of these machines as making a guess
about where the middle of the input is

All the sequences with a wrong guess reject

But the one sequence that makes the right guess
accepts, and one is all it takes

\

Outline

13.1 Stack Machine Basics
13.2 A Stack Machine for {a"b"}
13.3 A Stack Machine for {xx~}

3.4 Stack Machines, Formally Defined

13.5 Example: Equal Counts

13.6 Example: A Regular Language
13.7 A Stack Machine for Every CFG
13.8 A CFG For Every Stack Machine

The 4-Tuple

* A stack machine M is a 4-tuple M = (T, Z, S, 9)
— I'" is the stack alphabet
— 2 is the input alphabet
— S &I is the initial stack symbol
— 0 € ((ZU{e}) x I' = P(I'*) is the transition function

* The stack alphabet and the input alphabet may
or may not have symbols in common

Transition Function

Typeis d € ((ZU{e}) x I' — P(I'™)
That is, in 6(x,y) = Z:
— Xxis an input symbol or ¢
— yis a stack symbol
— The result Z is a set of strings of stack symbols

The result is a set because the stack machine is
nondeterministic

For a given input symbol x and top-of-stack symbol y,
there may be more than one move

So, there may be more than one string that can be
pushed onto the stack in place of y

Example

read |pop |push
1. ¢ | S| ab
2. a | S| ef
3. a | S| €

« M=(T, Z, S, 0) where
—-I'={S, a, b, e,f}
- 2 ={a}
— (¢,S) = {ab}
o(a,S) = {e, ef}

Instantaneous Descriptions

« At any point in a stack machine's operation, its future
depends on two things:

— That part of the input string that is still to be read
— The current contents of the stack

* An instantaneous description (ID) for a stack machine
IS a pair (x, y) where:
— X € X* is the unread part of the input
— y &I is the current stack contents

« As always, the left end of the string y is considered to
be the top of the stack

A One-Move Relation On IDs

e Wewillwrite /= Jiflisan ID and J is ID that
follows from [after one move of the stack
machine

« Technically: — is a relation on IDs, defined by
the 6 function for the stack machine as follows:

— Regular transitions: (ax, Bz) » (x, yz) if and only if
y € d(a,B)

— e-transitions: (x, Bz) = (x, yz) if and only if
y € d(¢,B).

* Note no move is possible when stack is empty

Zero-Or-More-Move Relation

* As we did with grammars and NFAs, we
extend this to a zero-or-more-move -’

« Technically, " is a relation on IDs, with [~ J
If and only if there is a sequence of zero or

more relations that starts with / and ends
with J

* Note this is reflexive by definition: we always
have | =" | by a sequence of zero moves

A Stack Machine's Language

* The language accepted by a stack machine is
the set of input strings for which there is at
least one sequence of moves that ends with
the whole string read and the stack empty

« Technically, LIM) ={x&X*]| (x, S)~ (g, ¢)}

Previous
Example

1.
2.
3.

read |pop |push
a | S| S1
€ S €
b | 1 €

» Accepting aaabbb:

— Start:

— Move 1:
— Move 1:
— Move 1:
— Move 2:
— Move 3:
— Move 3:
— Move 3:

iInput:
input:
input:
input:
iInput:
input:
input:
input:

aaabbb; stack: S

aaabbb; stack: S1
aaabbb; stack: S11
aaabbb; stack: S111
aaabbb; stack: 111
aaabbb; stack: 11
aaabbb; stack: 1
aaabbb_; stack empty

Example,
Continued

M= ({a,b,S}, {a,b}, S, 0), where
O(e,S) = {&}

~ 8(a,S) = {ST1}

The accepting sequence of moves for abbbba is

read |pop |push
a | S| S1
€ S €
b | 1 €
o(b, 1) = {e}

— (aaabbb, S) - (aabbb, S1)~ (abbb, S11) - (bbb, S111)

~ (bbb, 111) ~ (bb, 11) = (b, 1) =

(aaabbb, S) » (¢, €) and so aaabbb & L(M)

Outline

13.1 Stack Machine Basics

13.2 A Stack Machine for {a"b"}

13.3 A Stack Machine for {xx~}

13.4 Stack Machines, Formally Defined
13.5 Example: Equal Counts

13.6 Example: A Regular Language
13.7 A Stack Machine for Every CFG
13.8 A CFG For Every Stack Machine

Simulating DFAs

* A stack machine can easily simulate any DFA
— Use the same input alphabet
— Use the states as stack symbols
— Use the start state as the start symbol

— Use a transition function that keeps exactly one
symbol on the stack: the DFA's current state

— Allow accepting states to be popped; that way, if
the DFA ends in an accepting state, the stack
machine can end with an empty stack

Example

M = ({qo, 94, 92, G}, {0,1}, Qo O)

0(0,q0) = {90} 6(1,q0) = {q4}
0(0,94) = {q,} 6(1,94) = {q3}
0(0,q,) = {qo} 6(1,9,) = {q4}
0(0,q3) = {q,} 6(1,q3) = {qs}
o(¢,q,) = {¢} o(¢,q5) = {¢}

» Accepting sequence for 0110:

— (0110, go) = (110, qo) = (10, g4) = (0, g3) = (&, q2) = (e, €)

DFA To Stack Machine

Such a construction can be used to make a stack
machine equivalent to any DFA

It can be done for NFASs too

It tells us that the languages definable using a stack
machine include, at least, all the regular languages

In fact, regular languages are a snap: we have an
unbounded stack we barely used

We won't give the construction formally, because we
can do better...

Outline

13.1 Stack Machine Basics

13.2 A Stack Machine for {a"b"}

13.3 A Stack Machine for {xx~}

13.4 Stack Machines, Formally Defined
13.5 Example: Equal Counts

13.6 Example: A Regular Language
13.7 A Stack Machine for Every CFG
13.8 A CFG For Every Stack Machine

From CFG To Stack Machine

A CFG defines a string rewriting process

Start with S and rewrite repeatedly, following
the rules of the grammar until fully terminal

We want a stack machine that accepts
exactly those strings that could be generated
by the given CFG

Our strategy for such a stack machine:

— Do a derivation, with the string in the stack

— Match the derived string against the input

Strategy

Two types of moves:
1. A move for each production X — y
2. A move for each terminal a € X

The first type lets it do any derivation

read |pop |push
€ X y
a | a €

The second matches the derived string and the input

Their execution is interlaced:

— type 1 when the top symbol is nonterminal

— type 2 when the top symbol is terminal

Example: {xxR | x € {a,b}*}
read |pop |push

€ aSa

S—aSa|bSb|¢

bSbh

€
€
€

8

Derivation for abbbba:
S = aSb = abSbha = abbSbba = abbbba

Accepting sequence of moves on abbbba:

(abbbba, S) —, (abbbba, aSa) —, (bbbba, Sa) -, (bbbba, bSba) ~;
(bbba, Sba) —, (bbba, bSbba) — (bba, Sbba) — (bba, bba)
(ba, ba) ~; (a, a) =, (g, €)

OB WODN -~
pl [V NN 2
SO |INWnWn

Lemma 13.7

If G=(V, Z, S, P)is any context-free grammar,
there is some stack machine M with L(M) = L(G).

Proof sketch: by construction
Construct M = (VUZ, Z, S, §), where
— forallve V, d(e,v) = {x| (v—=x) € P}
— forall a €z, 6(a,a) = {¢}
M accepts x if and only if G generates x ie,
(x,S) »" (g,e) if and only if S =" x
L(M) = L(G)

Summary

We can make a stack machine for every CFL

That's stronger than our demonstration of a
stack machine for every regular language

So now we know that the stack machines are
at least as powerful as CFGs for defining
languages

Are they more powerful? Are there stack

machines that define languages that are not
CFLs?

Outline

13.1 Stack Machine Basics

13.2 A Stack Machine for {a"b"}

13.3 A Stack Machine for {xx~}

13.4 Stack Machines, Formally Defined
13.5 Example: Equal Counts

13.6 Example: A Regular Language
13.7 A Stack Machine for Every CFG
13.8 A CFG For Every Stack Machine

From Stack Machine To CFG

We can't just reverse the previous
construction, since it produced restricted
productions

But we can use a similar idea

The executions of the stack machine will be
exactly simulated by derivations in the CFG

To do this, we'll construct a CFG with one
production for each move of the stack
machine

Lemma 13.8.1

It M= (T, Z, S, §) is any stack machine, there is
context-free grammar G with L(G) = L(M).

Proof by construction
Assume that I'M=={} (without loss of generality)
Construct G = (T, %, S, P), where
P={A—atl)| AcT,aczU{e}, and t € 6(a,A)}
wheret & I'™*
Now leftmost derivations in G simulate runs of M:
S =" xif and only if (x,S) =* (¢,¢)
forany x € =*
So L(G) = L(M)

read|pop|push 1 S— aSB
1. a | S| SB 2 S se
2._& | S] ¢ = 3. B—b
3. b | B £ '

» One-to-one correspondence:
— Where the stack machine has t € 6(a,A)...
— ... the grammar has A—at

« Accepting sequence on aabb:
(aabb, S) ~, (abb, SB) ~, (bb, SBB) ~, (bb, BB) =, (b, B) =, (e, €)
« Derivation of abab:

S =, aSB =, aaSBB =, aaBB =, aabB =; aabb

Disjoint Alphabets Assumption

The stack symbols of the stack machine become
nonterminals in the CFG

The input symbols of the stack machine become
terminals of the CFG

That's why we need to assume I'M2={}: symbols in a
grammar must be either terminal or nonterminal, not
both

This assumption is without loss of generality because
we can easily rename stack machine symbols to get
disjoint alphabets...

Renaming Example

read |pop |push
Given a stack machine with 1T._a | S|Shb
intersecting alphabets: 2 € S €
3. b | b €
 We can rename the stack symbols read |pop [push
(the po_p.and push co!umns only) to 1 a S |SBB
get disjoint alphabets:
€ S €
* Then use the construction: 3 b B €
S —aSBB | ¢

B—b

Theorem 13.8

A language is context free if and only if
it is L(M) for some stack machine M.

* Proof: follows immediately from Lemmas 13.7
and 13.8.1.

 Conclusion: CFGs and stack machines have
equivalent definitional power

