
The Structure of Programming
Languages
l With the exception of the Generator we saw

that all language processors perform some
kind of syntax analysis – an analysis of the
structure of the program.

l To make this efficient and effective we need
some mechanism to specify the structure of a
programming language in a straight forward
manner.

èWe use grammars for this purpose.

Grammars
l The most convenient way to describe the structure of

programming languages is using a context-free grammar
(often called CFG or BNF for Backus-Nauer Form).

l Here we will simply refer to grammars with the
understanding that we are referring to CFGs. (there are
many kind of other grammars: regular grammars,
context-sensitive grammars, etc)

Grammars
l Grammars can readily express the structure of phrases

in programming languages
l stmt: function-def | return-stmt | if-stmt | while-stmt
l function-def: function name expr stmt
l return-stmt : return expr
l if-stmt : if expr then stmt else stmt endif
l while-stmt: while expr do stmt enddo

Grammars
l Grammars have 4 parts to them

1. Non-terminal Symbols - these give names to phrase
structures - e.g. function-def

2. Terminal Symbols - these give names to the tokens in a
language – e.g. while (sometimes we don’t use explicit
tokens but put the words that make up the tokens of a
language in quotes)

3. Rules - these describe that actual structure of phrases in
a language – e.g. return-stmt: return exp

4. Start Symbol - a special non-terminal that gives a name to
the largest possible phrase(s) in the language (often
denoted by an asterisk)

l In our case that would probably be the stmt non-terminal

Example: The Exp0 Language
prog : stmt prog

| ""

stmt : p exp ;
| s var exp ;

exp : + exp exp
| - exp exp
| (exp)
| var
| num

var : x | y | z

num : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

Start Symbol: prog

Example Exp0 Program:

s x 1 ; p + x 1 ;

Grammars
l A grammar tells us if a sentence belongs to the

language,
l e.g. Does ‘s x 3 ;’ belong to the language?

l We can show that a sentence belongs to the
language by constructing a parse tree
starting at the start symbol

Grammars

s x 3 ;

prog

stmt

s var exp ;

x 3

Note: constructing the parse tree by filling in the leftmost
non-terminal at each step we obtain the left-most derivation:

prog Þ
stmt prog Þ
s var exp ; prog Þ
s x exp ; prog Þ
s x 3 ; prog Þ
s x 3 ;

Constructing the parse tree by filling in the rightmost non-terminal
at each step we obtain the right-most derivation.

prog : stmt prog
| ""

stmt : p exp ;
| s var exp ;

exp : + exp exp
| - exp exp
| (exp)
| var
| num

var : x | y | z

num : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

prog

“”

Grammars
l Every valid sentence (a sentence that

belongs to the language) has a parse tree.
l Test if these sentences are valid:

l p x + 1 ;
l s x 1 ; s y x ;
l s x 1 ; p (+ x 1) ;
l s y + 3 x ;
l s + y 3 x ;

Parsers
l The converse is also true:

l If a sentence has a parse tree, then it belongs to
the language.

l This is precisely what parsers do: to show a
program is syntactically correct, parsers construct
a parse tree

Top-Down Parsers - LL(1)
l LL(1) parsers start constructing the parse tree at the

start symbol
l as opposed to bottom up parsers, LR

l LL(1) parsers use the current position in the input
stream and a single look-ahead token to decide how
to construct the next node(s) in the parse tree.

l LL(1)
l Reads input from Left to right.
l Constructs the Leftmost derivation
l Uses 1 look-ahead token.

Top-Down Parsing
Lookahead Set

Consider: p + x 1 ;

prog : {p,s} stmt prog
| {""} ""

stmt : {p} p exp ;
| {s} s var exp ;

exp : {+} + exp exp
| {-} - exp exp
| {(} (exp)
| {x,y,z} var
| {0,1,2,3,4,5,6,7,8,9} num

var : {x} x | {y} y | {z} z

num : {0} 0 | {1} 1 | {2} 2 | {3} 3 | {4} 4 | {5} 5 | {6} 6 | {7} 7 | {8} 8 | {9} 9

For top-down parsing we can think
of the grammar extended with the
one token look-ahead set.

The look-ahead set uniquely identifies
the selection of each rule within a
block of rules

Computing the Lookahead Set

Note: a grammar is a list of rules and a rule is the tuple (non-terminal, body)
Note: a grammar extended with lookahead sets is a list of rules where each rule

is the tuple (non-terminal, lookahead-set, body)

Computing the Lookahead Set

set union operator in Python

Computing the Lookahead Set

grammar G:

prog : stmt prog
| ""

stmt : p exp ;
| s var exp ;

exp : + exp exp
| - exp exp
| (exp)
| var
| num

var : x | y | z

num : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

grammar GL:

prog : {p,s} stmt prog
| {""} ""

stmt : {p} p exp ;
| {s} s var exp ;

exp : {+} + exp exp
| {-} - exp exp
| {(} (exp)
| {x,y,z} var
| {0,1,2,3,4,5,6,7,8,9} num

var : {x} x | {y} y | {z} z

num : {0} 0 | {1} 1 | {2} 2 | ... | {8} 8 | {9} 9

Computing the Lookahead Set
l Actually, the algorithm we have outlined computes

the lookahead set for a simpler parsing technique
called sLL(1) – simplified LL (1) parsing.

l sLL(1) parsing does not deal with non-terminals that
expand into the empty string in the first position of a
production – also called nullable prefixes.

l All our hand-built parsers will be sLL(1) but when we
use Ply and we will have access to a powerful
parsing technique called LR(1).

Constructing a Parser
l A sLL(1) parser can be constructed by hand

by converting each non-terminal into a
function

l The body of the function implements the right
sides of the rules for each non-terminal in
order to:
l Process terminals
l Call the functions of other non-terminals as

appropriate

Constructing a Parser by Hand
l A parser for Exp0

l We start with the grammar for Exp0 extended with the lookahead sets

prog : {p,s} stmt prog
| {""} ""

stmt : {p} p exp ;
| {s} s var exp ;

exp : {+} + exp exp
| {-} - exp exp
| {(} (exp)
| {x,y,z} var
| {0,1,2,3,4,5,6,7,8,9} num

var : {x} x | {y} y | {z} z

num : {0} 0 | {1} 1 | {2} 2 | ... | {8} 8 | {9} 9

Constructing a Parser by Hand
We need to set up some sort of character input stream

from grammar_stuff import InputStream

InputStream supports the operations: ‘pointer’, ‘next’, and ‘end_of_file’

set_stream(InputStream([<input list of characters>]))

Note: all the Python code given in the slides is available in the ‘code’ section of the Plipy Notebooks.

Note: the hand-built parser for Exp0 is in ’exp0_recdesc.py’

Constructing a Parser by Hand
Consider the following rule:

prog : stmt prog
| “”

def prog():
while not I.end_of_file():

stmt()

Note: a lookahead set is not necessary here – only one rule to choose from
besides the empty rule.

Constructing a Parser by Hand

stmt : {‘p’} 'p' exp ';'
| {‘s’} 's’ var exp ';'

def stmt():
sym = I.pointer()
if sym == 'p':

I.next()
exp()
I.next() # match the ';'

elif sym == 's':
I.next()
var()
exp()
I.next() # match the ';'

else:
raise SyntaxError('unexpected symbol {} while parsing'.format(sym))

Notice that we are using the look-ahead set to decide which rule to call!

def exp():
sym = I.pointer()
if sym == '+':

I.next()
exp()
exp()

elif sym == '-':
I.next()
exp()
exp()

elif sym in ['x', 'y', 'z']:
var()

elif sym in ['0', '1', '2', '3', '4', '5', '6','7', '8', '9']:
num()

else:
raise SyntaxError('unexpected symbol {} while parsing'.format(sym))

Constructing a Parser by Hand

exp : {‘+’} '+' exp exp
| {‘-’} '-' exp exp
| {‘(‘} '(' exp ')'
| {‘x’,’y’,’z} var
| {‘0’…’9’} num

def var():
sym = I.pointer()
if sym == 'x':

I.next()
elif sym == 'y':

I.next()
elif sym == 'z':

I.next()
else:

raise SyntaxError('unexpected symbol {} while parsing'.format(sym))

Constructing a Parser by Hand

var : { ‘x’ } ‘x’ | { ‘y’ } ‘y’ | { ‘z’ } 'z’

Constructing a Parser

num : { ‘0’ } ‘0’ | { ‘1’ } ‘1’ | … | { ‘9’ } '9'

def num():
sym = I.pointer()
if sym in ['0', '1', '2', '3', '4', '5', '6','7', '8', '9']:

I.next()
else:

raise SyntaxError('unexpected symbol {} while parsing'.format(sym))

Constructing a Parser: An
Example p + x 1 ;

def prog():
while not I.end_of_file():

stmt()

Call Tree:

prog()
stmt()

I.next() #‘p’
exp()

I.next() #‘+’
exp()

var()
I.next() #‘x’

exp()
num()

I.next() #‘1’
I.next() #‘;’

prog

stmt

p exp ;

x 1

exp exp

rhsvar num

+

def stmt():
sym = I.pointer()
if sym == 'p':

I.next()
exp()
I.next() # ';'

elif sym == 's':
I.next()
var()
exp()
I.next() # ';'

else:
raise

SyntaxError(…)

def exp():
sym = I.pointer()
if sym == '+':

I.next()
exp()
exp()

elif sym == '-':
I.next()
exp()
exp()

elif sym in ['x', 'y', 'z']:
var()

elif sym in ['0', …, '9']:
num()

else:
raise SyntaxError(…)

Constructing a Parser: An
Example
l Observations:

l Our parser is an LL(1) parser (why?)
l The parse tree is implicit in the function call

activation record stack
l Building a parser by hand is a lot of work and the

parser is difficult to maintain.
l We would like a tool that reads our grammar file

and converts it automatically into a parser – that is
what Ply does!

Running the Parser
l The examples assume that you have

cloned/downloaded the Plipy book and have
access to the ‘code’ folder.

l For notebook demos it is assumed that you
navigated Jupyter to the ‘code’ folder and
started a new notebook

l This works for all OS’s that Anaconda
supports

Running the Parser

Assignments
l Read Chapter 2
l Assignment #1 -- see the website

