Bottom-Up Parsing — LR(1)

Previously we have studied top-down or LL(1)
parsing.

The idea here was to start with the start symbol and
keep expanding it until the whole input was read and
matched.

In bottom-up or LR(1) parsing we do exactly the
opposite, we try to match the input to a rule and
then keep reducing the input replacing it with the
non-terminal of the rule. The last step is to replace
the current input with the start-symbol.

Observation: in LR(1) parsing we apply the rules
backwards — this is called reduction

Bottom-Up Parsing — LR(1)

e InourLL(1) parsing example we replaced non-terminal symbols with
functions that did the expansions and the matching for us.

e In LR(1) parsing we use a stack to help us find the correct
reductions.

e Given a stack, an LR(1) parser has four available actions:
Shift — push an input token on the stack

Reduce — pop elements from the stack and replace by a non-
terminal (apply a rule ‘backwards’)

Accept — accept the current program
Reject — reject the current program

Bottom-Up Parsing — LR(1)

p+x1;

grammar exp0;

prog

stmt

exp

var

num

stmt prog

lpl eXp l;l

's’ var exp ;'

'+' exp exp
"' exp exp
l(l eXp l)l
var

num

IXI | |yl | |Z|

Stack Input Action
<empty> p+x1; Shift
p +x1; Shift
p+ x1; Shift
p+ X 1; Reduce
p + var 1; Reduce
p + exp 1; Shift
p+exp1 ; Reduce
p + exp num ; Reduce
p + exp exp ; Reduce
p exp ; Shift
p exp ; <empty> Reduce
stmt <empty> Shift
stmt <empty> <empty> Reduce
stmt prog <empty> Reduce
prog <empty> Accept

Bottom-Up Parsing — LR(1) :
E

<empty>
Y

p +

P+ X prog

p + var
stmt

+
p +exp /\\ prog

p+exp1 P exp , \

p + exp num = T~

exp exp
p + exp exp *
/ \

p exp var num
pexp; | \

stmt

p+x1;

stmt <empty>

stmt prog
prog

Bottom-Up Parsing — LR(1)

Let’s try an illegal sentence

p+Xs;

grammar exp0;

prog : stmt prog
| ”n
stmt : P'exp’’
's’varexp "}
exp : '+' exp exp
| ' exp exp
| l(l eXp I)l
| var
| num
Var . IXI | |yl | IZI

num : '0...'9

Stack Input Action
<empty> p+XS; Shift

P +XS; Shift
p+ XS; Shift
p+ X S ; Reduce
p + var S ; Reduce
p +exp S ; Shift
p+exps ; Shift
p+exps; <empty> Reject

Bottom-Up Parsing — LR(1) :

Let’s try it with the a grammar where
left-hand side and right-hand variables

are differentiated.

p+x1;

prog

stmt

exp

Ihsvar

rhsvar

num

stmt prog

lpl eXp l;l

's’ lhsvar exp ;'

'+' exp exp
' exp exp
l(l eXp l)l
rhsvar
num

IXI | |yl | |Z|

IXI | |yl | |Z|

Stack Input Action
<empty> p+x1; Shift
p +x1; Shift
p+ X1; Shift
p+ X 1; Reject

There is a conflict between the lhsvar rule and rhsvar rule
here, we do not have enough information to select one

rule over the other. This is called a reduce/reduce conflict
in bottom-up parsing terminology.

That means, even though our grammar is a perfectly legal
context-free grammar, it is not a grammar that can be used
by a bottom-up parser, we say that the grammar is not LR(1).

We didn’t point this out but there are also grammars which
are perfectly legal CFG’s that are not LL(1).

Bottom-Up Parsing — LR(1)

e LR(1) parsers are implemented in such tools
as Yacc (Unix) and Bison (Linux)

e The tool we will be using, Ply, also
implements LR(1) parsing.

e Other tools such as ANTLR implement LL(1)
parsing®

* Actually ANTLR implement LL(k) parsing a slightly more
powerful version of LL(1) parsing.

Parser Generators

e Writing parsers by hand if difficult and time
consuming

e The resulting parsers are difficult to maintain
and extend

e |ldeally we would like a tool that reads a
grammar definition and generates a parser
from that description

Parser Generators

Grammar Parser
, Generator
File

That looks very much like a translator!

Parser Code
(e.g. Python)

Parser Generators

Grammar Syntax
File Analysis

IR

Parser generators are an example of a domain specific

-

language translator!

Semantic
Analysis

IR

BN

Code
Generation

-

Parser
Code

Ply is a parser generator, it translates a grammar specification
into parser code written in Python.

Using Ply

e Recall:

The examples assume that you have cloned or
downloaded the Plipy book and have access to the
‘code’ folder on your local machine

For notebook demos it is assumed that you navigated
Jupyter to the ‘code’ folder and started a new
notebook

e Documentation on Ply can be found here:

e Documentation on Ply grammar specifications
can be found here:

Using Ply

e Thisis our ‘exp0_gram.py’
file

e In Ply the grammar is
specified in the docstring of
the grammar functions

e Don’t worry about the lex
stuff — it simply sets up a
character input stream for
the parser to read

e Goal is to generate a parser
from this specification

from ply import yacc
from exp0 lex import tokens, lexer

def p grammar(_):

prog : stmt prog
| empty

stmt :'p' exp
| 's’ var exp '/

exp : '+ exp exp
| = exp exp
| 'Cexp)
| var
| num

var : 'x’
| yyv
| 'z

’

num: 0’

© 6y oRWN =

pass

def p empty(p):
'empty :'
pass

def p error(t):
print("Syntax error at '$s'" % t.value)

parser = yacc.yacc(debug=False,tabmodule='expOparsetab')

Using Ply

In [10]: from exp0 gram import parser
from exp0_lex import lexer

In [11]: parser.parse(input="p + 1 2
In [12]: parser.parse(input="gq + 1 2
Illegal character g

Syntax error at '+'

In []:

.
14

.
r

n

n

14

14

lexer=lexer)

lexer=1lexer)

Actions

e Making the generated parser do something useful.

e |n the hand-coded parser you can add code anywhere in
order to make the parser do something useful...like
counting ‘p’ statements.

o In parsers generated by parser generators we use
something called ‘actions’ we insert into the grammar.

e In Ply actions are inserted into the grammar specification
as Python code:

def p exp var(_):

global count

count += 1

000
0000
0000
|
- o0
Actions :
e In order to insert actions we need to break the Ply grammar into smaller functions
e The idea of our language processor is to count the number of right-hand side variables in a
program
def p prog():
def p grammar(_): prog : stmt prog
prog : stmt prog |~ pass
| empty
def p prog empty():
prog : empty
: rint("count = ".format (count
Actions — b ({} ())

Actions

7 rryy

exp : + exp exp
| - exp exp
|'C exp)
| var
| num

s

def p grammar(_):

Actions

=)

def p exp(:

exp : '+ exp exp
| - exp exp
|'C exp)
| num

¥ pass
exp : var

e global count
count += 1

def p exp var(_):

Actions

In [1]: from exp0 count import parser, init count
from exp0_lex import lexer

In [2]: init count()
parser.parse(input="s x + y 1 ;", lexer=lexer)
count =1
In [3]: init_ count()
parser.parse(input="s x + y 1 ; p x ;", lexer=lexer)

count = 2

In []:

Assignment

e Assignment #2 — see website

