
Bottom-Up Parsing – LR(1)
l Previously we have studied top-down or LL(1)

parsing.
l The idea here was to start with the start symbol and

keep expanding it until the whole input was read and
matched.

l In bottom-up or LR(1) parsing we do exactly the
opposite, we try to match the input to a rule and
then keep reducing the input replacing it with the
non-terminal of the rule. The last step is to replace
the current input with the start-symbol.

l Observation: in LR(1) parsing we apply the rules
backwards – this is called reduction

Bottom-Up Parsing – LR(1)
l In our LL(1) parsing example we replaced non-terminal symbols with

functions that did the expansions and the matching for us.
l In LR(1) parsing we use a stack to help us find the correct

reductions.
l Given a stack, an LR(1) parser has four available actions:

l Shift – push an input token on the stack
l Reduce – pop elements from the stack and replace by a non-

terminal (apply a rule ‘backwards’)
l Accept – accept the current program
l Reject – reject the current program

Bottom-Up Parsing – LR(1)
p + x 1 ;

grammar exp0;

prog : stmt prog
| ””
;

stmt : 'p' exp ';'
| 's’ var exp ';'
;

exp : '+' exp exp
| '-' exp exp
| '(' exp ')'
| var
| num
;

var : 'x' | 'y' | 'z'
;

num : '0’ …'9'
;

Stack Input Action
<empty> p + x 1 ; Shift

p + x 1 ; Shift

p + x 1 ; Shift

p + x 1 ; Reduce

p + var 1 ; Reduce

p + exp 1 ; Shift

p + exp 1 ; Reduce

p + exp num ; Reduce

p + exp exp ; Reduce

p exp ; Shift

p exp ; <empty> Reduce

stmt <empty> Shift

stmt <empty> <empty> Reduce

stmt prog <empty> Reduce

prog <empty> Accept

Bottom-Up Parsing – LR(1)
p + x 1 ;

Stack
<empty>

p

p +

p + x

p + var

p + exp

p + exp 1

p + exp num

p + exp exp

p exp

p exp ;

stmt

stmt <empty>

stmt prog

prog

prog

stmt

p exp ;

x 1

exp exp

var num

+

prog

“”

Bottom-Up Parsing – LR(1)

p + x s ;
Stack Input Action
<empty> p + x s ; Shift
p + x s ; Shift
p + x s ; Shift
p + x s ; Reduce
p + var s ; Reduce
p + exp s ; Shift
p + exp s ; Shift
p + exp s ; <empty> Reject

Let’s try an illegal sentence

grammar exp0;

prog : stmt prog
| ””
;

stmt : 'p' exp ';'
| 's’ var exp ';'
;

exp : '+' exp exp
| '-' exp exp
| '(' exp ')'
| var
| num
;

var : 'x' | 'y' | 'z'
;

num : '0’ …'9'
;

Bottom-Up Parsing – LR(1)

p + x 1 ;

Stack Input Action
<empty> p + x 1 ; Shift
p + x 1 ; Shift
p + x 1 ; Shift
p + x 1 ; Reject

prog : stmt prog
| ””
;

stmt : 'p' exp ';'
| 's’ lhsvar exp ';'
;

exp : '+' exp exp
| '-' exp exp
| '(' exp ')'
| rhsvar
| num
;

lhsvar : 'x' | 'y' | 'z'
;

rhsvar : 'x' | 'y' | 'z'
;

num : '0’ …'9'
;

Let’s try it with the a grammar where
left-hand side and right-hand variables
are differentiated.

There is a conflict between the lhsvar rule and rhsvar rule
here, we do not have enough information to select one
rule over the other. This is called a reduce/reduce conflict
in bottom-up parsing terminology.

That means, even though our grammar is a perfectly legal
context-free grammar, it is not a grammar that can be used
by a bottom-up parser, we say that the grammar is not LR(1).

We didn’t point this out but there are also grammars which
are perfectly legal CFG’s that are not LL(1).

Bottom-Up Parsing – LR(1)
l LR(1) parsers are implemented in such tools

as Yacc (Unix) and Bison (Linux)
l The tool we will be using, Ply, also

implements LR(1) parsing.
l Other tools such as ANTLR implement LL(1)

parsing*

* Actually ANTLR implement LL(k) parsing a slightly more
powerful version of LL(1) parsing.

Parser Generators
l Writing parsers by hand if difficult and time

consuming
l The resulting parsers are difficult to maintain

and extend
l Ideally we would like a tool that reads a

grammar definition and generates a parser
from that description

Parser Generators

Parser
GeneratorGrammar

File
Parser Code
(e.g. Python)

That looks very much like a translator!

Parser Generators

Syntax
Analysis

Grammar
File

IR
Semantic
Analysis

IR
Code

Generation Parser
Code

Parser generators are an example of a domain specific
language translator!

Ply is a parser generator, it translates a grammar specification
into parser code written in Python.

Using Ply
l Recall:

l The examples assume that you have cloned or
downloaded the Plipy book and have access to the
‘code’ folder on your local machine

l For notebook demos it is assumed that you navigated
Jupyter to the ‘code’ folder and started a new
notebook

l Documentation on Ply can be found here:
l http://www.dabeaz.com/ply/ply.html

l Documentation on Ply grammar specifications
can be found here:
l http://www.dabeaz.com/ply/ply.html#ply_nn23

Using Ply
l This is our ‘exp0_gram.py’

file
l In Ply the grammar is

specified in the docstring of
the grammar functions

l Don’t worry about the lex
stuff – it simply sets up a
character input stream for
the parser to read

l Goal is to generate a parser
from this specification

from ply import yacc
from exp0_lex import tokens, lexer

def p_grammar(_):
"""
prog : stmt prog

| empty

stmt : 'p' exp ';'
| 's' var exp ';'

exp : '+' exp exp

| '-' exp exp
| '(' exp ')'
| var
| num

var : 'x'

| 'y'
| 'z'

num : '0'

| '1'
| '2'
| '3'
| '4'
| '5'
| '6'
| '7'
| '8'
| '9'

"""
pass

def p_empty(p):

'empty :'
pass

def p_error(t):

print("Syntax error at '%s'" % t.value)

parser = yacc.yacc(debug=False,tabmodule='exp0parsetab')

Using Ply

Actions
l Making the generated parser do something useful.
l In the hand-coded parser you can add code anywhere in

order to make the parser do something useful…like
counting ‘p’ statements.

l In parsers generated by parser generators we use
something called ‘actions’ we insert into the grammar.

l In Ply actions are inserted into the grammar specification
as Python code:

Actions

Actions
l In order to insert actions we need to break the Ply grammar into smaller functions
l The idea of our language processor is to count the number of right-hand side variables in a

program

def p_grammar(_):
"""
prog : stmt prog

| empty

…

def p_prog(_):
'''
prog : stmt prog
'''
pass

def p_prog_empty(_):

'''
prog : empty
'''
print("count = {}".format(count))

Actions

Actions

def p_grammar(_):
""”
…

 exp : '+' exp exp
| '-' exp exp

 | '(' exp ')'
 | var
 | num
…
 """

def p_exp(_):

'''
exp : '+' exp exp

| '-' exp exp
| '(' exp ')'
| num

'''
pass

def p_exp_var(_):

'''
exp : var

'''
global count
count += 1

Actions

Actions

Assignment
l Assignment #2 – see website

