Multi-Symbol Words - Lexical
Analysis

e In our exp0 programming language we only had words of
length one

e However, most programming languages have words of
lengths more than one

e The lexical structure of a programming language specifies
how symbols are combined to form words
Not to be confused with the phrase structure which tells us how
words are combined to form phrases and sentences
e The lexical structure of a programming language can be
specified with regular expressions
whereas the phrase structure is specified with CFGs.

e The “parser” for the lexical structure of a programming
language is called a lexical analyzer or lexer

Multi-Symbol Words - Lexical
Analysis

e This gives us the following hierarchy:

symbol
l » Lexical structure (regular expressions)
word
phrase + Phrase structure (grammars)

l

sentence

Ply & Regular Expressions

e The lexer in Ply uses the Python regular
expression syntax

e Documentation on the Ply lexer can be found
here:

Regular Expressions (RE)

e REs can be defined inductively as follows:

Each letter ‘a’ through ‘z" and ‘A’ through ‘Z’ constitutes a RE and
matches that letter

Each number ‘0’ through ‘9" constitutes a RE and matches that number

Each printable character ‘(‘, *)’,’+’, efc. constitutes a RE and matches that
character.

If Ais a RE, then (A) is also a RE and matches A
‘(A) vs. \(A\)

If A and B are REs, then AB is also a RE and matches the concatenation of
A and B.

If A and B are REs, then A|B is also an RE and matches A or B

If A'is a RE, then A? is also a RE and matches zero or one instances of A
If A'is a RE, then A* is also a RE and matches zero or more instances of A
If A is a RE, then A+ is also a RE and matches one or more instances of A

NOTE: Python regular expressions are written as strings, in particular as raw strings
suchas: r’\ (a|b\)+’

Regular Expressions (RE)
e Useful RE Notations:
‘[a — z]’ - any single character between ‘a’ and ‘Z’
A — Z] - any single character between ‘A’ and ‘Z’
0 — 9] - any single digit between ‘0" and ‘9’
. - the dot matches any character
e Also, any other character can be considered a RE.
You need to distinguish between RE commands and
syntax of the language to be defined:
l.e., ‘at+’ vs. aA\t’
e Examples

E) 6. €37 6.0 ¢

p r i ‘n" 't is the same as ‘print’ (why)
-?[0-9]+
([a—2z] [[A-Z])+[0-9]"

1

1

000
000
o0
[
Regular Expressions (RE)
e EXxercises:
Write a RE for character strings that start and end with a
single digit.
E.g. 3abcd

Write a RE for numbers that have at least two digits and a
dot separates the first two digits

E.g.3.14,25,3.0,0.125
Write a RE for numbers where the dot can appear
anywhere

E.g. 12.5, .10, 125.0, 125.678, 15.
Write a RE for words that start with a single capital letter

followed by lowercase letters and numbers, neither of
which has to appear in the word.

E.g. Version10a, A

The Exp1 Language

e \We extend the ExpO language to create Exp1:
keywords that are longer than a single character

Variable names that conform to the normal variable names
found in other programming languages: a single alpha
character followed by zero or more alpha-numerical
characters

Numbers that consist of more than one digit.

e Ply allows you to specify both the lexer (lex) and the
parser (yacc)

e Itis common practice to convert words of the
language longer than one character into tokens

Exp1 Lexer

Single-character words \

Multi-character words

%load code/expl lex.py
Lexer for Expl

from ply import lex

reserved = {
'store’: 'STORE ',
'‘print’: 'PRINT'
]
literals =[;,+,-,(,)]
tokens = ['NAME', 'NUMBER'] + list(reserved.values())
t _ignore ="\t
def t NAME(t):
r'la-zA-Z][a-zA-Z 0-9]*'

t.type = reserved.get(t.value, 'NAME')
return t

Check for reserved words

def t NUMBER(t):
r'[0-9]+
t.value =
return t

int(t.value)

def t NEWLINE(t):
r’\n
pass

def t _error(t):
raise SyntaxError("Illegal character {}".format(t.value[0]))

build the lexer
lexer = lex.lex()

Exp1 Grammar

%load code/expl gram.py
from ply import yacc
from expl lex import tokens, lexer

def p grammar(_):

Ve

prog : stmt list

stmt_list : stmt stmt list
| empty

stmt : PRINT exp
| STORE var exp

exp : '+ exp exp
| = exp exp
| 'C exp)
| var
| num

var : NAME
num : NUMBER

Ve

pass
def p empty(p):
'empty :'

pass

def p error(t):
print("Syntax error at '$s'" %

parser = yacc.yacc()

t.value)

Tokens

e The definition of Tokens usually has two parts:
A token type
A token value

e For example, in Exp1 we have
a token type PRINT with a token value of ‘print’

a token type NUMBER with an integer token
value.

Testing the Specification

In [18]: from expl gram import parser
from expl lex import lexer

Generating LALR tables

In [23]: input stream = "store x1 10 ; print + x1 1 ;

In [24]: parser.parse(input=input stream, lexer=lexer)

Writing an Interpreter for Exp1

e \Writing an interpreter for Exp1

We add actions to the grammar rules that
interpret the values within the phrase structure of
a program.

Observation: we need access to the token values
during parsing in order to evaluate things like the
values of numbers or the value of an addition.

Observation: interpretation always starts at the
leaves.

Writing an Interpreter for Exp1

e Consider the following Exp1 program:

storey + 2 x;

e \Where x has the value 3.

2?77

STORE

Action:

stmt

var

NAME(y)

start

exp SEMI

PLUS exp exp

INTVAL(2) var

NAME(x)

2?77

STORE

Action:

stmt

var

NAME(y)

interpret INTVAL

exp SEMI

PLUS exp exp

INTVAL(2) var

]

NAME(x)

2?77

STORE

Action:

stmt

var

NAME(y)

propagate

exp SEMI

PLUS exp exp
2

INTVAL(2) var

NAME(x)

2?77

STORE

Action:

stmt

var

NAME(y)

000
0000
0000
o000
o0
propagate ®
exp SEMI
2

PLUS exp exp

INTVAL(2) var

NAME(x)

2?77

STORE

Action:

stmt

var

NAME(y)

interpret NAME

exp SEMI

2
PLUS exp exp
INTVAL(2) var

NAME(x)

1

2?77

STORE

Action:

stmt

var

NAME(y)

read symbol table

exp SEMI

2
PLUS exp exp

INTVAL(2) var

—> NAME(x)

2?77

STORE

Action:

stmt

var

NAME(y)

000
0000
0000
o000
o0
propagate ®
exp SEMI
2

PLUS exp exp

INTVAL(2) var
3

NAME(x)

2?77

STORE

Action:

stmt

var

NAME(y)

000
0000
0000
o000
o0
propagate ®
exp SEMI
2

PLUS exp exp
3

INTVAL(2) var

NAME(x)

2?77

STORE

Action:

stmt

var

NAME(y)

add

exp SEMI

2
PLUS exp exp

INTVAL(2) var

NAME(x)

2?77

STORE

000
0000
0000
o000
o0
Action: propagate ®
stmt
5
var exp SEMI
NAME(y) PLUS exp exp

INTVAL(2) var

NAME(x)

000
0000
0000
o000
o0
Action: propagate ®
3
77?7
stmt
5
STORE var exp SEMI
NAME(y) PLUS exp exp

INTVAL(2) var

NAME(x)

000
0000
0000
o060
o0
Action: interpret NAME [
3
?7?77?
stmt
STORE var exp SEMI
5
NAME(y) PLUS exp exp

INTVAL(2) var

NAME(x)

stmt

RE var

NAME(y)

Action:

000
0000
0000
o000
o0
write to symbol talQls

exp SEMI

PLUS exp exp

INTVAL(2) var

NAME(x)

STORE

Action:

stmt

var

NAME(y)

done

exp SEMI

PLUS exp exp

INTVAL(2) var

NAME(x)

Interpretation

e Consider the Exp1 expression: + 1 2

exp : '+' exp exp
| ' exp exp
| ("exp’) eXp
| var
| num
: + exp exp

\ \

Interpretation means, computing the value
of the root node.

num num
We have to start at the leaves of the tree, 1 2
that is where the primitive values are and

proceed upwards... I I

What is the value at the root node?

Interpretation

e \We can rewrite the grammar to add the appropriate actions
that have this bottom-up behavior. exp

exp : '+' exp exp /N

; \ \
num num

‘ | |

1 2

def p plus exp(p):

Observation: the p list holds the values

of all the symbols of the right side of a
production. p[0] represents the value of the
left side of the production:

exp : '+ exp exp

p[0] = pl[2] + p[3]

exp : '"t' exp exp

def p_num_exp(p): |[g4of p num(p): 0 1 2 3

SXp - n‘:m “num : NUMBER"
p[0] = p[1] pl0] = p[1]

Note: p[1] == '+

Extended Exp1

Grammar

%load code/expl lrinterp gram.py
from ply import yacc
from expl lex import tokens, lexer

symbol table = dict()

def p prog(_):
"prog : stmt list"
pass

def p stmt list(_):

stmt_list
| empty

stmt stmt list

pass

def p print stmt(p):
“stmt : PRINT exp’”
print("> {}”.format(p[2]))

def p store_stmt(p):
“stmt : STORE NAME exp "
symbol table[p[2]] = p[3]

Note: the lexer has not changed, only
the grammar was extended with actions

;ef p_plus_exp(p):
exp : '+ exp exp
pl0] = p[2] + p[3]

def p minus exp(p):
exp : - exp exp
pl0] = p[2] - p[3]

def p paren exp(p):
exp: (exp?
pl0] = p[2]

def p var exp(p):
exp :var
p[0] = p[1]

def p num exp(p):
exp : num

pl0] = p[1]

def p var(p):
“var : NAME"
pl0] = symbol table.get(p[i], 0)

def p num(p):
“num : NUMBER"
pl0] = p[1]

def p empty(p):
n empty : n
pass

def p error(t):
print("Syntax error at

%

s % t.value)

parser = yacc.yacc(debug=False, tabmodule='explparsetab')

Exp1 Lexer

%load code/expl lex.py
Lexer for Expl

from ply import lex
reserved = {

'store’: 'STORE ',

'‘print’: 'PRINT'
]
literals = [}, +,=())]
tokens = ['NAME', 'NUMBER'] + list(reserved.values())
t _ignore ="\t
def t NAME(t):

r'la-zA-Z][a-zA-Z 0-9]*'

t.type = reserved.get(t.value, 'NAME')
return t

Check for reserved words

def t NUMBER(t):
r'[0-9]+
t.value = int(t.value)
return t

def t NEWLINE(t):
r’\n
pass

def t _error(t):
raise SyntaxError("Illegal character {}".format(t.value[0]))

build the lexer
lexer = lex.lex()

Putting this all together

e To finish the interpreter...

We have to create a top-level driving function that
finds and connects the input file to the
lexer/parser.

from expl_lrinterp_gram import parser

def expl_lrinterp(input_stream = None):
'A driver for our LR Expl interpreter.'

if not input_stream:
input_stream= input("expl > ")

parser.parse(input_stream)

Putting this all together

e \We now have an interpreter that can run programs such as:

store y 3;
store x 2;
print + x vy;

In [2]: from expl lrinterp import expl lrinterp

In [3]: program = \
store y 3;

store x 2;
print + x y;

In [4]: expl lrinterp(program

> 5

In []:

Reading

e Chapter 3
e Assignment #3 — please see website

