
Abstract Syntax Trees
l Our Exp1bytecode language was so

straightforward that the best IR was an
abstract representation of the instructions

l In more complex languages, especially
higher level languages it usually not possible
to design such a simple IR

l Instead we use Abstract Syntax Trees
(ASTs)

Chap 5

Abstract Syntax Trees
l One way to think about ASTs is as parse trees with

all the derivation information deleted

Abstract Syntax Trees
l Because every valid program has a parse tree, it is

always possible to construct an AST for every valid
input program.

l In this way ASTs are the IR of choice because it
doesn’t matter how complex the input language,
there will always be an AST representation.

l Besides being derived from the parse tree, AST
design typically follows three rules of thumb:
l Dense: no unnecessary nodes
l Convenient: easy to understand, easy to process
l Meaningful: emphasize the operators, operands, and the

relationship between them; emphasize the computations

Tuple Representation of ASTs
l A convenient way to represent AST nodes is with the following

structure,
l (TYPE [, child1, child2,...])

l A tree node is a tuple where the first component represents the
type or name of the node followed by zero or more components
each representing a child of the current node.

l Consider the abstract syntax tree for + x - y x,

The Cuppa1 Language
l Our next language is a simple high-level

language that supports structured
programming with ‘if’ and ‘while’ statements.

l However, it has no scoping and no explicit
variable declarations.

The Cuppa1 Language
// list of integers
get x;
while (1 <= x)
{

put x;
x = x - 1;

}

Infix Expressions!

Precedence & Associativity Table:

The Cuppa1 Language cuppa1_gram.py

grammar for Cuppa1

from ply import yacc
from cuppa1_lex import tokens, lexer

set precedence and associativity
NOTE: all arithmetic operator need to have tokens
so that we can put them into the precedence table
precedence = (

('left', 'EQ', 'LE'),
('left', 'PLUS', 'MINUS'),
('left', 'TIMES', 'DIVIDE'),
('right', 'UMINUS', 'NOT')

)

def p_grammar(_):

'''
program : stmt_list

stmt_list : stmt stmt_list
| empty

stmt : ID '=' exp opt_semi

| GET ID opt_semi
| PUT exp opt_semi
| WHILE '(' exp ')' stmt
| IF '(' exp ')' stmt opt_else
| '{' stmt_list '}'

opt_else : ELSE stmt

| empty

opt_semi : ';'

| empty
…

…
exp : exp PLUS exp

 | exp MINUS exp
| exp TIMES exp
| exp DIVIDE exp
| exp EQ exp
| exp LE exp
| INTEGER
| ID
| '(' exp ')'
| MINUS exp %prec UMINUS
| NOT exp

'''
pass

def p_empty(p):

'empty :'
pass

def p_error(t):

print("Syntax error at '%s'" % t.value)

build the parser
parser = yacc.yacc()

The Parser Specification

The Cuppa1 Language
Lexer for Cuppa1

from ply import lex

reserved = {
'get' : 'GET',
'put' : 'PUT',
'if' : 'IF',
'else' : 'ELSE',
'while' : 'WHILE',
'not' : 'NOT'

}

literals = [';','=','(',')','{','}']

tokens = [

'PLUS','MINUS','TIMES','DIVIDE',
'EQ','LE',
'INTEGER','ID',
] + list(reserved.values())

t_PLUS = r’\+'
t_MINUS = r'-'
t_TIMES = r’*'
t_DIVIDE = r'/'
t_EQ = r'=='
t_LE = r'<='

t_ignore = ' \t'

…

…
def t_ID(t):

r'[a-zA-Z_][a-zA-Z_0-9]*'
t.type = reserved.get(t.value,'ID') # Check for reserved words
return t

def t_INTEGER(t):
r'[0-9]+'
return t

def t_COMMENT(t):
r'//.*'
pass

def t_NEWLINE(t):

r’\n'
pass

def t_error(t):

print("Illegal character %s" % t.value[0])
t.lexer.skip(1)

build the lexer
lexer = lex.lex(debug=0)

cuppa1_lex.py

The Lexer Specification

Testing our Parser
Notice the shift/reduce conflict!

The error is due to the if-then-else
statement with the optional else.

The default action for shift/reduce conflicts
is to always shift.

That is exactly right for us!

The Cuppa1 Frontend
l A frontend is a parser that

1. Constructs an AST
2. Fills out some rudimentary information in a symbol table

class State:
def __init__(self):

self.initialize()

def initialize(self):
symbol table to hold variable-value associations
self.symbol_table = {}

when done parsing this variable will hold our AST
 self.AST = None

state = State()

cuppa1_state.y

We use the State to maintain
the program AST and a symbol
table.

AST: Statements
def p_stmt(p):

'''
stmt : ID '=' exp opt_semi

| GET ID opt_semi
| PUT exp opt_semi
| WHILE '(' exp ')' stmt
| IF '(' exp ')' stmt opt_else
| '{' stmt_list '}'

'''
if p[2] == '=':
p[0] = ('assign', p[1], p[3])
state.symbol_table[p[1]] = None

elif p[1] == 'get':
p[0] = ('get', p[2])
state.symbol_table[p[2]] = None

elif p[1] == 'put':
p[0] = ('put', p[2])

elif p[1] == 'while':
p[0] = ('while', p[3], p[5])

elif p[1] == 'if':
p[0] = ('if', p[3], p[5], p[6])

elif p[1] == '{':
p[0] = ('block', p[2])

else:
raise ValueError("unexpected symbol {}".format(p[1]))

cuppa1_frontend_gram.py

def p_opt_else(p):
'''
opt_else : ELSE stmt

| empty

'''
if p[1] == 'else':
p[0] = p[2]

else:
p[0] = p[1]

def p_empty(p):
'empty :'

p[0] = ('nil',)

Consider:
stmt : ID '=' exp opt_semi

Gives rise to the following actions:
p[0] = ('assign', p[1], p[3])
state.symbol_table[p[1]] = None

Consider the rule: IF '(' exp ')' stmt opt_else
What does the tuple tree look like for the various shapes of the ‘if’ statement?

AST: Statement Lists &
Programs cuppa1_frontend_gram.py

def p_prog(p):
'''

program : stmt_list
'''
state.AST = p[1]

def p_stmt_list(p):
'''

stmt_list : stmt stmt_list
| empty

'''
if (len(p) == 3):

p[0] = ('seq', p[1], p[2])
elif (len(p) == 2):

p[0] = p[1]

def p_empty(p):
'''

empty :
'''
p[0] = ('nil',)

Statement lists are ‘nil’ terminated
‘seq’ terms.

Save the construct AST in the state!

AST: Expressions cuppa1_frontend_gram.py

def p_binop_exp(p):
'''
exp : exp PLUS exp

| exp MINUS exp
| exp TIMES exp
| exp DIVIDE exp
| exp EQ exp
| exp LE exp

'''
p[0] = (p[2], p[1], p[3])

###
def p_integer_exp(p):

'''
exp : INTEGER

'''
p[0] = ('integer', int(p[1]))

###
def p_id_exp(p):

'''
exp : ID

'''
p[0] = ('id', p[1])

###
def p_paren_exp(p):

'''
exp : '(' exp ')'

'''
p[0] = ('paren', p[2])

###
def p_uminus_exp(p):

'''
exp : MINUS exp %prec UMINUS

'''
p[0] = ('uminus', p[2])

###
def p_not_exp(p):

'''
exp : NOT exp

'''
p[0] = ('not', p[2])

###

This should look familiar,
same structure as for the
expressions in exp1bytecode
language.

Running the Frontend

Running the Frontend

Running the Frontend

Running the Frontend

Running the Frontend

Processing ASTs:
Tree Walking
l The recursive structure of trees gives rise to

an elegant way of processing trees: tree
walking.

l A tree walker typically starts at the root node
and traverses the tree in a depth first manner.

Processing ASTs:
Tree Walking

Consider the following:

Processing ASTs:
Tree Walking A simple tree walker for our expression tree

Processing ASTs:
Tree Walking A simple tree walker for our expression tree

We just interpreted the expression tree!!!

Processing ASTs:
Tree Walking

l Notice that this
scheme mimics what
we did in the syntax
directed interpretation
schema,

l But now we interpret
an expression tree
rather than the implicit
tree constructed by
the parser.

A simple tree walker for our expression tree

Tree Walkers are Plug'n Play
l Tree walkers exist completely separately from the AST.
l Tree walkers plug into the AST and process it using their

node functions.

Tree Walkers are Plug'n Play
l There is nothing to prevent us from plugging in

multiple walkers during the processing of an AST,
each performing a distinct phase of the processing.

An Interpreter for Cuppa1

An Interpreter for Cuppa1
cuppa1_interp_walk.py

An Interpreter for Cuppa1 cuppa1_interp_walk.py

An Interpreter for Cuppa1
cuppa1_interp.py

A Pretty Printer with a Twist
l Our pretty printer will do the following things:

l It will read the Cuppa1 programs and construct an
AST

l It will compute whether a particular variable is
used in the program

l It will output a pretty printed version of the input
script but will flag assignment/get statements to
variables which are not used in the program

èThis cannot be accomplished in a syntax directed manner – therefore
we need the AST

PrettyPrinting the Language
// list of integers
get x;
i = x;
while (1 <= x) {

put x;
x = x - 1;

}

get x
i = x // -- var i unused --
while (1 <= x)
{

put x
x = x - 1

}

? We need an IR because usage will always occur after definition – cannot be
handled by a syntax directed pretty printer.

The Pretty Printer is a
Translator!
l The Pretty Printer with a Twist fits neatly into

our translator class
l Read input file and construct AST/Collect info
l Generate output code, flagging unused

assignments

Syntax
AnalysisProgram

Text

IR

Semantic
Analysis

IR
Code

Generation
Target

Language

Variable definition/usage analysis

Pretty Printer Architecture

Frontend + 2 Tree Walkers

PP1: Variable Usage
l The first pass of the pretty printer walks the AST

and looks for variables in expressions
l only those count as usage points.

l A peek at the tree walker for the first pass,
cuppa1_pp1_walk.py

shows that it literally just walks the tree doing
nothing until it finds a variable in an expression.

l If it finds a variable in an expression then the
node function for id_exp marks the variable in
the symbol table as used,

PP1: Variable Usage

Just Walking the Tree!

PP1: Variable Usage

But…

PP1: Variable Usage
l Recall that when the frontend finds a definition of a variable as an

l assignment statement or a
l get statement

l it enters the variable into the symbol table and initializes it with None.

PP1: Variable Usage
Testing the tree walker

PP2: Pretty Print Tree Walker
l The tree walker for the second pass walks the AST

and compiles a formatted string that represents the
pretty printed program.

Recall that programs are nil terminated
Seq lists of statements:

Concatenate the string
for stmt with the string from
the rest of the Seq list.

PP2: Pretty Print Tree Walker

Indent() and indent_level keep track of the code indentation for formatting purposes.

Top Level Function of PP

Top level function

The Cuppa1 PP

Testing the pretty printer

Assignment
l Assignment #5 – see webpage.

