
An Optimizing Compiler
l The big difference between interpreters and compilers is that

compilers have the ability to think about how to translate a
source program into target code in the most effective way.

l Usually that means trying to translate the program in such a way
that it executes as fast as possible on the target machine.

l This usually implies either one or both of the following tasks:
l Rewrite the AST so that it represents a more efficient program – Tree

Rewriting
l Reorganize the generated instructions so that they represent the most

efficient target program possible
l This is referred to as Optimization.
l There are many optimization techniques available to compilers in

addition to the two mentioned above:
l Register allocation, loop optimization, common subexpression

elimination, dead code elimination, etc

An Optimizing Compiler
l In our optimizing compiler we study:

l Tree rewriting in the context of constant folding,
and

l Target code optimization in the context of
peephole optimization.

Tree Rewriting
l So far our applications only have looked at

the AST as an immutable data structure
l Bytecode interpreter used it to execute

instructions
l The Cuppa1 interpreter used it as an abstract

representation of the original program
l PrettyPrinter used it to regenerate programs

l But there are many cases where we actually
want to transform the AST
l Consider constant folding

Constant Folding
l Constant folding is an optimization that tries

to find arithmetic operations in the source
program that can be performed at compile
time rather than runtime.

Constant Folding
l In constant folding we look at the operations in

arithmetic expressions and if the operands are
constants then we perform the operation and
replace the AST with a result node.

=

x +

10 5

=

x 15

x = 10 + 5 x = 15

Constant Folding
l One way to view constant folding is as a AST rewriting.
l Here the AST for the expression 10 + 5 is replaced by an

AST node for the constant 15.
l In order to accomplish this we need to walk the AST for a

Cuppa1 program and look for patterns that allow us to
rewrite the tree.

l This is very similar to code generation tree walker where
we walked the tree and looked for AST patterns that we
could translate into Exp1bytecode.

l The big difference being that in the constant folder we will
be returning the rewritten tree from the tree walker rather
than bytecode as in the code generator.

Constant Folding
Consider:

cuppa1_cc_fold.py

Constant Folding
Consider:

cuppa1_cc_fold.py

Constant Folding
Consider:

cuppa1_cc_fold.py

Constant Folding
Let's try our walker on our assignment statement example to see if it does what we claim it does,

Compiler Architecture
l As an example we insert a constant folding tree

rewriting phase into our Cuppa1 compiler as a tree
walker.

ASTInput Outputbuild write

Constant Folding
Walker

CodeGen
Walker

Frontend

Peephole Code Optimization
l A peephole optimizer improves the generated

code by reorganizing the generated
instructions.

l If you recall the code generator for our
Cuppa1 compiler translates Cuppa1 AST
patterns into Exp1bytecode patterns and
simply composes the generated bytecode
patterns into a list of instructions.

l That can lead to very silly looking code.

Peephole Code Optimization
Consider:

Really Silly!

Peephole Code Optimization
There is a rule for that:

Peephole Code Optimization

Even Sillier!

Consider:

Peephole Code Optimization
There is a rule for that:

Peephole Code Optimization
l One way to think of a peephole optimizer is as a window

(the peephole) which we slide across the generated
instructions repeatedly and apply rewrite rules like the ones
we developed above to the code within the window.

l The peephole optimizer terminates once no longer any
code is being rewritten.

l The repeated nature of the process is necessary because
applying one rewrite rule to the instruction list can expose
opportunities to apply other rewrite rules.

l So we need to keep sliding the window across the
instructions until no further rewrites are possible.

Peephole Code Optimization

Peephole Code Optimization
Rewrite Rules:

cuppa1_cc_output.py

Peephole Code Optimization
###
apply peephole optimization. The instruction tuple format is:
(instr_name_str, [param_str1, param_str2, ...])
def peephole_opt(instr_stream):

ix = 0
change = False

while(True):

curr_instr = instr_stream[ix]

compute some useful predicates on the current instruction
is_first_instr = ix == 0
is_last_instr = ix+1 == len(instr_stream)
has_label = True if not is_first_instr and label_def(instr_stream[ix-1]) else False

<** rewrite rules here **>

 ### advance ix
if is_last_instr and not change:

break

elif is_last_instr:

ix = 0
change = False

else:

ix += 1

cuppa1_cc_output.py

Optimizing Compiler
Architecture
l We insert our peephole optimizer between the code

generator and the output phase

ASTInput
Peephole

Opt
build

Constant Folding
Walker

CodeGen
Walker

Frontend

Output

Optimizing Compiler
Top-level Driver Function

cuppa1_cc.py

