
Language Implementation 
Review
l A typical programming language can be 

implemented in one of two ways
l Interpreter - interpreters execute the instructions 

of the source language directly and produce the 
desired ouput

l Compiler - compilers translate the source program 
into another programming language which in turn 
needs to be interpreted to produce results.  
l If the target language is interpreted by a hardware 

interpreter then we refer to it as machine language.



Interpreters
l Interpreters are usually constructed using tree walkers
l We have seen two interpreters: the bytecode interpreter 

and the Cuppa1 interpreter.

ASTsource
code

program 
output

build

Interpretation
Tree walker



The bytecode Interpreter
l “AST” was a list of instructions
l Tree walker simply simulated the instructions 

using a ‘symbol’ table and a ‘label’ table.
l See: csc402-ln005.pdf



Cuppa1 Interpreter
l AST was an abstract representation derived 

from the parse tree
l We used tree walker to interpret the ast

which made use of a ‘symbol’ table
l See: csc402-ln006.pdf



Compilers
l Compilers are usually constructed using tree walkers
l We have seen one compiler: the cuppa1 to bytecode compiler

ASTsource 
code

target
code

build

Code Generation
Tree walker



Cuppa1 to Bytecode Compiler
l AST derived from parse tree
l Tree walker for code generation
l See: csc402-ln007.pdf



Optimizing Compilers
l Optimizing compilers have additional phases and 

modules that allow them to produce more efficient 
target code.

ASTInput
Peephole

Opt
build

Constant Folding
Walker

CodeGen
WalkerFrontend

Output



Optimizing Compilers
l Our optimizing compiler for Cuppa1 had two 

optimization phases:
l A constant folding tree rewriter
l A peephole optimizer

l See: csc402-ln008.pdf


