
Scope & Symbol Table
l Most modern programming languages have some

notion of scope.
l Scope defines the “lifetime” of a program symbol.
l If a symbol is no longer accessible then we say that

it is “out of scope.”
l The simplest scope is the “block scope.”
l With scope we need a notion of variable declaration

which allows us to assert in which scope the
variable is visible or accessible.

Cuppa2
l We extend our Cuppa1 language with

variable declarations of the form

declare x = 10;

l Declares the variable x in the current scope
and initializes it to the value 10

l If the current scope is the global (outermost)
scope then we call x a “global” variable.

Cuppa2 Grammar

cuppa2_gram.py

Cuppa2 Frontend

cuppa2_frontend_gram.py

Cuppa2
l We can now write properly scoped programs
l Consider:

declare x = 1;
{

declare x = 2;
put x;

}
{

declare x = 3;
put x;

}
put x;

Variable Shadowing
l An issue with scoped declarations is that inner

declarations can “overshadow” outer declarations
l Consider:

declare x = 2;
{

declare x = 3;
{

declare y = x + 2;
put y;

}
}

What is the output of the program once it is run?

Variable update
l A variable update can be outside of our

current scope.
l Consider

declare x = 2;
{

declare y = 3;
x = y + x;
put x;

}
put x;

Symbol Tables
l To deal with programs like that we need

something more sophisticated for variable
lookup than a dictionary.

C a dictionary stack

l This stack needs to be able to support the
following functionality
l Declare a variable (insertion)
l Lookup a variable
l Update a variable value

Semantic Rules for Variable
Declarations
l Here are the rules which we informally used

in the previous examples:
l The ‘declare’ statement inserts a variable

declaration into the current scope
l a variable lookup returns a variable value from the

current scope or the surrounding scopes
l Every variable needs to be declared before use
l No variable can be declared more than once in

the current scope.

Symbol Tables
l Design:

l we have a class SymTab that:
l Holds a stack of scopes

§ scoped_symtab
l Defines the interface to the symbol table

§ push_scope, pop_scope, declare_sym, etc

l By default, SymTab is initialized with a single
scope on the stack – the global scope.

Symbol Tables

declare x = 2;
{

declare y = 3;
x = y + x;
put x;

}
put x;

Global Scope

Local Scope

Current Scope Pointer

Symbol Table

Symbol Tables

declare x;
get x;
If (0 <= x)
{

declare i = x;
put i;

}
else
{

declare j = -1 * x;
put j;

}
put x;

Global Scope

Local Scope

Current Scope Pointer

Symbol Table

Symbol Tables

Global Scope

Local Scope

Current Scope Pointer

Symbol Table

declare x = 2;
{

declare x = 3;
{

declare y = x + 2;
put y;

}
}

Local Scope

Symbol Tables
CURR_SCOPE = 0

class SymTab:

#-------
def __init__(self):

global scope dictionary must always be present
self.scoped_symtab = [{}]

#-------
def push_scope(self):

push a new dictionary onto the stack - stack grows to the left
self.scoped_symtab.insert(CURR_SCOPE,{})

 #-------
def pop_scope(self):

pop the left most dictionary off the stack
if len(self.scoped_symtab) == 1:

raise ValueError("cannot pop the global scope")
else:

self.scoped_symtab.pop(CURR_SCOPE)

#-------
def declare_sym(self, sym, init):

declare the symbol in the current scope: dict @ position 0
…

 #-------
def lookup_sym(self, sym):

find the first occurence of sym in the symtab stack
and return the associated value
…

#-------
def update_sym(self, sym, val):

find the first occurence of sym in the symtab stack
and update the associated value
…

cuppa2_symtab.py

Symbol Tables
def declare_sym(self, sym, init):

declare the symbol in the current scope: dict @ position 0

first we need to check whether the symbol was already declared
at this scope
if sym in self.scoped_symtab[CURR_SCOPE]:

raise ValueError("symbol {} already declared".format(sym))

enter the symbol in the current scope
scope_dict = self.scoped_symtab[CURR_SCOPE]
scope_dict[sym] = init

def lookup_sym(self, sym):
find the first occurence of sym in the symtab stack
and return the associated value

n_scopes = len(self.scoped_symtab)

for scope in range(n_scopes):
if sym in self.scoped_symtab[scope]:

val = self.scoped_symtab[scope].get(sym)
return val

not found
raise ValueError("{} was not declared".format(sym))

Symbol Tables
def update_sym(self, sym, val):

find the first occurence of sym in the symtab stack
and update the associated value

n_scopes = len(self.scoped_symtab)

for scope in range(n_scopes):
if sym in self.scoped_symtab[scope]:

scope_dict = self.scoped_symtab[scope]
scope_dict[sym] = val
return

not found
raise ValueError("{} was not declared".format(sym))

Interpret
Walker

Note: Same as Cuppa1
interpreter except for the
addition of the declaration
statement and additional
functionality in block
statements and variable
expressions.

cuppa2_interp_walk.py

Interpret Walker

That’s it – everything else is the same as the Cuppa1 interpreter!

Syntactic vs Semantic Errors
l Grammars allow us to construct parsers that

recognize the syntactic structure of
languages.

l Any program that does not conform to the
structure prescribed by the grammar is
rejected by the parser.

l We call those errors “syntactic errors.”

Syntactic vs Semantic Errors
l Semantic errors are errors in the behavior of the

program and cannot be detected by the parser.
l Programs with semantic errors are usually syntactically

correct
l A certain class of these semantic errors can be caught

by the interpreter/compiler. Consider:
declare x = 10;
put x + 1;
declare x = 20;
put x + 2;

l Here we are redeclaring the variable ‘x’ which is not
legal in many programming languages.

l Many other semantic errors cannot be detected by the
interpreter/compiler and show up as “bugs” in the
program.

Symbol Tables

declare x = 10;
put x + 1;
declare x = 20;
put x + 2;

Global Scope

Current Scope Pointer

Symbol Table

Symbol Tables

x = x + 1;
put x;

Global Scope

Current Scope Pointer

Symbol Table

