
Compiling Scoped Code
l Compiling scoped code raises a set of issues

because most low-level languages do not
support scoping.

l Also, our low-level programming languages
do not support declarations, you simply start
using a variable name, therefore, all
declarations need to be resolved in the
source language processor.

l Declarations in the source language usually
just become assignment statements in our
low-level target language.

Compiling Scoped Code
l As long as all variables of the source program are

declared globally there is no problem:

// computes the factorial of x
declare x = 3;
declare y = 1;
while (1 <= x) {

y = y * x;
x = x - 1;

}
put y;

store R$x 3;
store R$y 1;

L0:
jumpF (<= 1 R$x) L1;
store R$y (* R$y R$x);
store R$x (- R$x 1);
jump L0;

L1:
noop
print R$y;
stop;

Here R$ is just a variable name prefix…it could be any string…it will become
significant when considering scoping.

Compiling Scoped Code
l Now consider the following program:

declare x = 1;
{

declare x = 2;
put x;

}
put x;

store R$x 1;
store R$x 2;
print R$x;
print R$x;
stop;

If we are not careful in our translation our target programs will be incorrect.

Expected output: 2 1 Actual output: 2 2

Compiling Scoped Code
l Now consider the following program:

declare x = 1;
{

declare x = 2;
put x;

}
put x;

store R$x 1;
store R$$x 2;
print R$$x;
print R$x;
stop;

In the target language we simulate scoping by adding a distinct
variable prefix for each scope: R$ - global scope, R$$ first nested scope,
R$$$ second nested scope, etc.

Expected output: 2 1 Actual output: 2 1

Compiling Scoped Code
l Now consider the following program:

declare x = 1;
{

declare x = 2;
put x;

}
{

declare x = 3;
put x;

}
put x;

store R$x 1;
store R$$x 2;
print R$$x;
store R$$x 3;
print R$$x;
print R$x;
stop;

This still works because two nested scopes at the same level
can never be active at the same time.

You have to be careful that the variable is properly initialized if
you use it for the second scope.

Expected output: 2 3 1 Actual output: 2 3 1

Compiler:
Cuppa2 à Exp1bytecode
l The compiler follows the Cuppa1 architecture.
l Uses the same symbol table as the interpreter, but

computes the variable prefix instead of storing values

ASTInput Outputbuild write

CodeGen
Walker

Frontend

Observations on Compilers
l Compilers do not compute values (as

interpreters do)
l Compilers validate the source program,

making sure that the intended behavior is
correct but do not execute it

l Compilers generate code for the target
machine that then executes the intended
behavior

Observations on the Symbol
Table
l The fact that compilers do not compute

values but validate the source program has
an effect on the symbol table:
l rather than storing variable-value pairs the symbol

table act merely as a record holder for variables
seen/declared

l in our case, the symbol table stores the variable-
’target name’ (scoped name) pairs

Observations on the Symbol
Table class SymTab:

#-------
def __init__(self):

…
#-------
def push_scope(self):

push a new dictionary onto the stack - stack grows to the left
…

#-------
def pop_scope(self):

pop the left most dictionary off the stack
…

#-------
def declare_sym(self, sym):

declare the symbol in the current scope: dict @ position 0

first we need to check whether the symbol was already declared
at this scope
if sym in self.scoped_symtab[CURR_SCOPE]:

raise ValueError("symbol {} already declared".format(sym))

enter the symbol in the current scope
n_scopes = len(self.scoped_symtab)
prefix = create_prefix(n_scopes-1)
scope_dict = self.scoped_symtab[CURR_SCOPE]
scope_dict[sym] = prefix + sym # value is the prefixed name

#-------
def lookup_sym(self, sym):

find the first occurence of sym in the symtab stack
and return the associated value

…
#-------
def update_sym(self, sym):

for the compiler version updating is the same as looking up
in order to check if sym is updateable.
self.lookup_sym(sym)
return

Cuppa2 Compiler
l We reuse the Cuppa2 interpreter frontend but we need to include

the new symbol table therefore we need to rename it
l cuppa2_cc_frontend.py

l Because the compiler is based on the Cuppa1 compiler we can
use most of that code generator but need to modify it for:
l Declarations
l Get
l Assignments
l Variables in expressions
l cuppa2_cc_codegen.py

l The output phase is the same as the Cuppa1 output phase, but
to keep things simple we deleted the peephole optimization
l to make your compiler more sophisticated you can add this back in J
l cuppa2_cc_output.py

Cuppa2 Codegen
cuppa2_cc_codegen.py

Cuppa2 Compiler
l Observation:

l The difference between the Cuppa1 and Cuppa2
language is the introduction of scope and declarations

l These are purely high-level language constructs and
we see this manifested in that the only thing that really
changed in the Cuppa2 compiler compared to the
Cuppa1 compiler is how variables are named!

l That means the Cuppa2 compiler is completely
responsible for enforcing scope it cannot pass that
through to the underlying abstract machine.

Cuppa2 Driver Function

cuppa2_cc.py

Testing the Compiler

