
Compiling Programs into our
Bytecode
l Our goal is to compile Cuppa3 programs into

Exp2Bytecode
l The big difference between the two languages is

that Cuppa3 is a statically scoped language
(supports nested scopes and statically scoped
functions) and Exp2Bytecode has no notion of
scope (all variables are global variables)

l We saw that in order to make recursion work in
Exp2Bytecode we resorted to allocating function
local variables in a frame on the runtime stack.

Compiling Global Code
l In terms of global code, nothing has changed from our

strategy we developed when we compiled Cuppa2
programs into bytecode:
l Every program variable that appears in the Cuppa3 program is

compiled into a unique global variable in the bytecode

declare x = 1;
{

declare x = 2;
put x;

}
{

declare x = 3;
put x;

}
put x;

store t$0 1 ;
store t$1 2 ;
print t$1 ;
store t$2 3 ;
print t$2 ;
print t$0 ;
stop ;

Compiling Functions
l For functions all local variables are stored on

the stack
l The actual parameters are pushed on the

stack in reverse order, and this is done
before the function frame is created.

l Also, during a function call, the return
address is pushed onto the stack before the
stack frame is created

Compiling Functions
l Here is what the stack looks like during a function call:

Actual Parametern

…

Actual Parameter1

Return Address

Local Variablem

…

Local Variable1

Formal Parameterk

…

Formal Parameter1

…

Top of Stack

Frame

Compiling Functions
l Consider the call add(3,2) to the function defined as

…

2

3

Return Address

temp

b

Top of Stack

Frame

add:
pushf 3;
store %tsx[0] %tsx[-4]; # init a
store %tsx[-1] %tsx[-5]; # init b
store %tsx[-2] (+ %tsx[0] %tsx[-1]); # store temp
store %rvx %tsx[-2];
popf 3;
return;

a

declare add(a,b) {
declare temp = a+b;
return temp;

}

Compiling Functions
l Now consider the following function:

// a program with nested functions that makes
// use of static scoping and generates a sequence
// of numbers according to the step variable.

declare seq(n) {
declare step = 2;
declare inc(k) return k+step;
declare i = 1;

// generate the sequence
while(i<=n) {

put(i);
i = inc(i)

}
}

// main program
seq(10);

Nested function
Declarations!

Our interpreter
handles this
correctly! Try it.

Compiling Functions
l To see the problem with nested function declarations for compilation, let’s

take a look at the compiled declare inc(k) return k+step; function

…

…

3

Return Address

temp

Top of Stack
Frame

inc:
pushf 2;
store %tsx[0] %tsx[-3] ; # init k
store %tsx[-1] (+ %tsx[0] %tsx[???]); # inc value into temp
store %rvx %tsx[-1];
popf 2;
return;

…
Frame
of Calling
Function

Note: ‘step’ is inaccessible from the nested function, ‘step’ is in the
frame of the calling function.

k

Compiling Functions
l Compiling inc as a global function presents no problems as long as the

function is statically scoped.

declare step = 2;
declare inc(k) return k+step;

declare seq(n) {
declare i = 1;

// generate the sequence
while(i<=n) {

put(i);
i = inc(i)

}
}

// main program
seq(10);

inc:
pushf 2;
store %tsx[0] %tsx[-3];
store %tsx[-1] (+ %tsx[0] step$0);
store %rvx %tsx[-1];
popf 2;
return;

Conclusion: we will disallow nested
function declarations in our compiler.

Compiling Expressions with
Functions
l Compiling expressions that contain function

calls presents a problem
l Expressions are represented as terms
l BUT function calls are statements in our bytecode
l That means function calls cannot appear in

expressions of the bytecode
l Solution: convert the evaluation of

expressions into three-address code
statements.

Three-Address Code
l Three-address code is an intermediate representation
l The name refers to the fact that in a single statement we

access at most three variables, constants, or functions.
l Each statement in three-address code has the general

form of:

x = y op z

where x, y and z are variables, constants or temporary
variables generated by the compiler and op represents
any operator, e.g. an arithmetic operator.

Source: Wikipedia

Three-Address Code
l Expressions containing more than one fundamental

operation, such as:

w = x + y * z

are not representable in three-address code.
l Instead, they are decomposed into an equivalent series

of three-address code statements, such as:

t1 = y * z
w = x + t1

Compiling Expressions with
Functions
l Consider the expression term:

3*2+6
l We turn this into three-address code

statements by doing only one operation at a
time and store the result in a temporary
variable:

T$1 = 3*2
T$2 = T$1+6

Compiling Expressions with
Functions
l That is exactly what the compiler will do:

store t$0 (* 3 2) ;
store t$1 (+ t$0 4) ;
print t$1 ;
stop ;

put 3*2+4;

Compiling Expressions with
Functions
l Now compiling expressions with functions is

straightforward
l Calling a function is just another operation whose result will

be stored in a temp
l Consider: 3*2+inc(5)
l We can rewrite the expression term as the following

three-address code statements:
T$1 = 3*2
T$2 = inc(5)
T$3 = T$1+T$2

Compiling Expressions with
Functions
l As compiled code:

declare inc(k) return k+1;

put 3*2+inc(5);

jump L32 ;

Start of function inc

inc:

pushf 2 ;
store %tsx[0] %tsx[-3] ;
store %tsx[-1] (+ %tsx[0] 1) ;
store %rvx %tsx[-1] ;
popf 2 ;
return ;

End of function inc

L32:

noop ;
store t$0 (* 3 2) ;
pushv 5 ;
call inc ;
popv ;
store t$1 %rvx ;
store t$2 (+ t$0 t$1) ;
print t$2 ;
stop ;

Compiler:
Cuppa3 à exp2bytecode
l The compiler has three phases:

l frontend,
l semantic analysis/tree rewrting,
l code generation.

l The symbol table has the same structure as in the interpreter to enforce
the semantics of Cuppa3
l But the symbol table also has structures that support the generation of target code.

ASTInput Outputbuild write

Tree Rewriting Walker

CodeGen
Walker

Frontend

Compiler:
Cuppa3 à exp2bytecode
l Let’s look at some code:

l cuppa3_cc_tree_rewrite.py
l cuppa3_cc_codegen.py

l Look at Notebook for test suites for Cuppa3
compiler: ‘Cuppa3 CC Tests’

