Compiling Programs into our
Bytecode

e Our goal is to compile Cuppa3 programs into
Exp2Bytecode

e The big difference between the two languages is
that Cuppa3 is a statically scoped language
(supports nested scopes and statically scoped
functions) and Exp2Bytecode has no notion of
scope (all variables are global variables)

e \We saw that in order to make recursion work in
Exp2Bytecode we resorted to allocating function
local variables in a frame on the runtime stack.

Compiling Global Code

e In terms of global code, nothing has changed from our
strategy we developed when we compiled Cuppa2
programs into bytecode:

Every program variable that appears in the Cuppa3 program is
compiled into a unique global variable in the bytecode

declare x = 1;

{
store tS0 1 ;
declare x = 2; v

fx store tS$1 2 ;
put x; print t$1 ;
% store t$2 3 ;

s print t$2 ;
detcla.re X=3; print t$0 ;
put x; stop ;

}
put X;

Compiling Functions

e For functions all local variables are stored on
the stack

e The actual parameters are pushed on the
stack Iin reverse order, and this is done
before the function frame is created.

e Also, during a function call, the return
address is pushed onto the stack before the
stack frame is created

Compiling Functions

e Here is what the stack looks like during a function call:

Frame <

Actual Parameter,,

Actual Parameter,

Return Address

Local Variable,,

Local Variable,

Formal Parameter,

Formal Parameter,

<: Top of Stack

000
0000
0000
o000
mgm - o0
Compiling Functions :
e Consider the call add(3,2) to the function defined as
declare add(a,b) {
declare temp = a+b;
return temp;
} D
add:

pushf 3;

store %tsx[0] Y%tsx[-4]; # init a

store Y%tsx[-1] %tsx[-5]; #initb

2 store %tsx[-2] (+ %tsx[0] %tsx[-1]); # store temp
store %rvx %tsx[-2];
3 popf 3;
return;
Return Address
-
temp
Frame < b

. <: Top of Stack
N

Compiling Functions

e Now consider the following function:

/I a program with nested functions that makes
/I use of static scoping and generates a sequence
/I of numbers according to the step variable.

declare seq(n) {
declare step = 2;
declare inc(k) return k+step;
declare i = 1;

Il generate the sequence
while(i<=n) {
put(i);
i =inc(i)
}
¥

/[main program
seq(10);

Nested function
Declarations!

Our interpreter
handles this
correctly! Try it.

000
0000
0000
000
g = o0
Compiling Functions :
e To see the problem with nested function declarations for compilation, let’ s
take a look at the compiled declare inc(k) return k+step; function
(
inc:
Frame pushf 2;
of Calling < store %tsx[0] Y%tsx[-3] ; # init k
Function store %tsx[-1] (+ %tsx[0] %tsx[??7?]); # inc value into temp
store %rvx %tsx[-1];
\ popf 2;
3 return;
Return Address
temp

Frame
‘ <: Top of Stack

Note: ‘step’ is inaccessible from the nested function, ‘step’ is in the
frame of the calling function.

Compiling Functions

Compiling inc as a global function presents no problems as long as the
function is statically scoped.

declare step = 2;
declare inc(k) return k+step;

declare seq(n) {
declare i = 1;

/I generate the sequence
while(i<=n) {
put(i);
I =inc(i)
}
}

// main program
seq(10);

—>

inc:

pushf 2;

store %tsx[0] %tsx[-3];

store %tsx[-1] (+ %tsx[0] step$0);
store %rvx %tsx[-1];

popf 2;

return;

Conclusion: we will disallow nested
function declarations in our compiler.

Compiling Expressions with
Functions

e Compiling expressions that contain function
calls presents a problem
Expressions are represented as terms
BUT function calls are statements in our bytecode
That means function calls cannot appear in
expressions of the bytecode
e Solution: convert the evaluation of
expressions into three-address code
statements.

Three-Address Code

e Three-address code is an intermediate representation

e The name refers to the fact that in a single statement we
access at most three variables, constants, or functions.

e Each statement in three-address code has the general
form of:

X=Yyopz
where X, y and z are variables, constants or temporary

variables generated by the compiler and op represents
any operator, e.g. an arithmetic operator.

Source: Wikipedia

Three-Address Code

e EXxpressions containing more than one fundamental
operation, such as:

W=X+y*z

are not representable in three-address code.

e Instead, they are decomposed into an equivalent series
of three-address code statements, such as:

Compiling Expressions with
Functions

e Consider the expression term:
3*2+6
e \We turn this into three-address code
statements by doing only one operation at a
time and store the result in a temporary
variable:
T$1 = 3*2
T$2 =T$1+6

Compiling Expressions with

Functions

e That is exactly what the compiler will do:

put 3*2+4;

—

store t$S0 (* 3 2) ;

store t$1 (+ t$0 4) ;

print t$1 ;
stop ;

Compiling Expressions with
Functions

e Now compiling expressions with functions is
straightforward

Calling a function is just another operation whose result will
be stored in a temp

e Consider: 3*2+inc(5)

e \We can rewrite the expression term as the following
three-address code statements:
T$1 =3*2
T$2 = inc(5)
T$3 =TH1+T$2

Compiling Expressions with

Functions

e As compiled code:

declare inc(k) return k+1;

put 3*2+inc(5);

—)

#

jump L32 ;

Start of function inc

#

inc:

#

pushf 2 ;
store %tsx[0] %tsx[-3];

store %tsx[-1] (+ %tsx[0] 1) ;

store %rvx %tsx[-1];
popf 2 ;
return ;

End of function inc

#
L32:

noop ;

store t$0 (* 3 2) ;
pushv 5 ;

call inc ;

popv ;

store t$1 %rvx ;

store t$2 (+ t$0 tS$1) ;
print t$2 ;

stop ;

Compiler:;
Cuppa3 2> exp2bytecode

e The compiler has three phases:
frontend,
semantic analysis/tree rewrting,
code generation.
e The symbol table has the same structure as in the interpreter to enforce
the semantics of Cuppa3
But the symbol table also has structures that support the generation of target code.

Tree Rewriting Walker

L l CodeGen
/ Walker
Frontend
\
' write
Input build /" asT + Output
J

Compiler:;
Cuppa3 2> exp2bytecode

e Let's look at some code:
cuppad_cc tree rewrite.py
cuppa3_cc_codegen.py

e Look at Notebook for test suites for Cuppa3
compiler: ‘Cuppa3 CC Tests’

