
Welcome - CSC 301
CSC 301- Foundations of Programming Languages
l Instructor: Dr. Lutz Hamel
l Email: lutzhamel@uri.edu
l Office: Tyler, Rm 251
l Office Hours: TBA
l TA: TBA

(See Course Website)

Assignments

l Quiz #0: Download & Read Syllabus –
upload a copy of it into Sakai

Why Study Programming
Languages?

l Amazing variety
l One of the moderated email lists counted ~2300 different

programming languages (comp.lang.*)
l “Strange” controversies

l Should a programming language have a ‘goto’ statement?
l Should an OO language allow for global functions?
l Terminology: argument vs. actual parameter.

l Many connections
l Programming languages touch upon virtually all areas of computer

science: from the mathematical theory of formal languages and
automata to the implementation of operating systems.

l Intriguing evolution
l Programming languages change!

l New ideas and experiences trigger new languages.
l New languages trigger new ideas, etc.

Programming Language Classes

There are many different programming
language classes, but four classes or
paradigms stand out:
l Imperative Languages
l Functional Languages
l Logic/Rule Based Languages
l Object-Oriented Languages

Example Computation

l Recursive definition of the factorial
operator

for all x > 0.
€

x!=
1 if x =1,
x(x −1)! otherwise.

$
%

Imperative Languages

l Hallmarks: assignment and iteration
l Examples: C, FORTRAN, COBOL
l Example Program: factorial program in C

int fact(int n) {
int sofar;
sofar = 1;
while (n > 1) {

sofar = sofar*n;
n--;

}
return sofar;

}

iteration assignment

Imperative Languages

Observations:
l The program text determines the order of

execution of the statements.
l We have the notion of a ‘current value’ of a

variable – accessible state of variable.
This is not always true in other languages.

Functional Languages

l Hallmarks: recursion and single valued
variables.

l Examples: ML, Lisp, Haskell
l Example Program: factorial program in ML

fun fact x = if x = 1 then 1
else x*fact(x-1);

recursion

Functional Languages

Observations:
l There are no explicit assignments.
l The name stems from the fact that

programs consist of recursive definitions of
functions.

Logic Programming Languages

l Hallmarks: programs consist of rules that specify the
problem solution.

l Examples: Prolog, Maude
l Example Program: factorial program written in Prolog

fact(1,1).
fact(X,F) :-

X > 1,
X1 is X-1,
fact(X1,F1),
F is X*F1.

rules

fact(in,out)

‘and’

assignment

Logic Programming Languages

Observations:
l Rules do not appear in the order of

execution in the program text.
l No specific order of execution is given –

rules ‘fire’ when necessary.

Object-Oriented Languages
l Hallmarks: bundle data with the allowed operations F Objects
l Examples: Java, C++, Smalltalk
l Example Program: factorial program in Java

class FactInt {
private int val;
public FactInt(int x) {

val = fact(x);
}
public int getVal() {

return val;
}
private int fact(int n) {

int sofar = 1;
while (n>1) {

sofar = sofar*n;
n--;

}
return sofar;

}
}

data

allowed
operations

Public
operations

Operation
only allowed
by the object
itself
(or subobjects)

Programming Language Classes

General Observations:
l Programming languages guide programmers

towards a particular programming style:
l Functional ® mathematical functions
l OO ® objects
l Logic ® rules

l Programming itself guides the developer towards
new language ideas:

l Recursion was introduced by John McCarthy in the
1950’s with the programming language Lisp to solve
problems in AI.

l Classes and objects were developed by Nygaard and Dahl
in the 1960’s and 70’s for the language Simula in order to
solve problem in simulations.

Take Away

l There exist many programming languages
today (> 2000)

l In order to understand the similarities and
differences Þ sort into classes
l Imperative

l assignment and iteration
l Functional

l Recursion, single valued variables
l Logic/rule based

l programs consist of rules
l Object-oriented

l bundle data with the allowed operations

Assignments

l Read Chapters 1&2

