
Formal Language Specification

l Programming languages are only useful
if they are “understood” by a computer.

l In order to insure this, programming
languages must have:
l A concise form (syntax), and
l A concise meaning (semantics)

F neither one can be ambiguous.

Formal Language Specification

Language Specifications consist of two
parts:
l The syntax of a programming language is the

part of the language definition that says what
programs look like; their form and structure.

l The semantics of a programming language is
the part of the language definition that says
what programs do; their behavior and
meaning.

Formal Language Specification

In order to insure conciseness of language
specifications we need tools:
l Grammars are used to define the syntax.
l Mathematical constructs (such as functions

and sets) are used to define the semantics.

Grammars

Example: a grammar for simple English sentences.

<Sentence>* ::= <Noun-Phrase> <Verb> <Noun-Phrase>
<Noun-Phrase> ::= <Article> <Noun>
<Verb> ::= loves | hates | eats
<Article> ::= a | the
<Noun> ::= dog | cat | rat

Production

Non-terminal Terminal

Start Symbol

F Grammars capture the structure of a language.

Grammars

Observations:
l A grammar consists of a collection of

productions.
l Each production defines the “structure” of a

non-terminal.
l There are no productions for terminals.
l In a grammar there is a unique non-

terminal, the start symbol, that defines the
largest structure in our language.

How do Grammars work?
We can view grammars as rules for building parse trees or derivation trees for sentences
in the language defined by the grammar. In these parse or derivation trees the
start symbol will always be at the root of the tree.

<Sentence>* ::= <Noun-Phrase> <Verb> <Noun-Phrase>
<Noun-Phrase> ::= <Article> <Noun>
<Verb> ::= loves | hates | eats
<Article> ::= a | the
<Noun> ::= dog | cat | rat

<Sentence>*

<Noun-Phrase> <Noun-Phrase><Verb>

<Article> <Noun> loves <Article> <Noun>

the dog the cat

Derivation:

Derived String

How do Grammars work?

Notes:
l A derived string can only contain terminals.
l The language defined by a grammar is the

set of all derived strings, formally

L(G) = { s | s can be derived from G }

where G is a grammar and s is a string of
terminal symbols.

How do Grammars work?

Now we can ask questions as follows:
l Assume we have a grammar G and a sentence s, does s

belong to L(G)?
l In other words, is the sentence s a derived string from G and,

it therefore belongs to L(G)?

Examples: let G be our English grammar,
l Does s = “the cat eats a rat” belong to L(G)?
l Does s = “the dog chases the cat” belong to L(G)?

F Show that s Î L(G) by constructing a parse tree.

F Show that s Ï L(G) by proving that no parse tree can
exist for this string in G.

Take Away

l Programming language specifications consist of two
parts: a syntax and a semantic specification

l We use grammars to specify the syntax unambiguously
l Grammars:

l Productions
l Non-terminals
l Terminals
l Start symbol

l In order to prove that a string s belongs to L(G) we
construct a parse tree

l In order to prove that a string s does not belong to L(G)
show that a parse tree cannot exist.

