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Observations:
-Language definitions have two parts: syntax and semantics
-Compilers have two phases which deal with each of these
language definition components: syntax analysis, semantic
analysis.



Compilation Example

int i;

void main () {
for (i = 1; i <= 100; i++)

fred(i);
}

...
i: data word 0
main: move 1 to i
L1: compare i with 100

jump to L2 if greater
push i
call fred
add 1 to i
goto L1

L2: return
fred: ...

Translating a C-like language to assembly language



Compilation Example

consider: 3*2+5
Assembly Language

load value, reg

Three registers: r1, r2, r3

Assembly Code:

load 3,r1
load 2,r2
mul r1,r2,r1
load 5,r2
add r1,r2,r1



Assignments

l Read chap 4
l HW #3 – see the website


