
The Anatomy of a Compiler
Source Program

Syntax Analysis

Semantic Analysis

Optimization

Code Generation

Translated Program

Parse
Trees
(ASTs)

Recognize the structure of a source program,
generate parse tree

Recognize/validate the meaning of a source program

Reorganize the parse tree/AST to make computations 
more efficient

Translate parse tree/AST into low-level language

Recognition
Phases

Code
Generation
Phases 

Observations:
-Language definitions have two parts: syntax and semantics
-Compilers have two phases which deal with each of these
language definition components: syntax analysis, semantic
analysis.



Compilation Example

int i;

void main () {
for (i = 1; i <= 100; i++)

fred(i);
}

...
i: data word 0
main: move 1 to i
L1: compare i with 100

jump to L2 if greater
push i
call fred
add 1 to i
goto L1

L2: return
fred: ...

Translating a C-like language to assembly language



Compilation Example

consider: 3*2+5
Assembly Language

load value, reg

Three registers: r1, r2, r3

Assembly Code:

load 3,r1
load 2,r2
mul r1,r2,r1
load 5,r2
add r1,r2,r1



Assignments

l Read chap 4
l HW #3 – see the website


