
Types

A Type is a Set of Values

Consider the statement:

int n;

Here we declare n to be a variable of type int; what we mean, n can take on any
value from the set of all integer values.

Also observe that the elements in a type share a common representation: each
element is encoded in the same way (float, double, char, etc.)

Also, all elements of a type share the same operations the language supports
for them.

Read Chapter 6

Types
Def: A type is a set of values.

Def: A primitive type is a type programmer can use but not define.

Def: A constructed type is a user defined type.

Example: Java, primitive type

float q;

type float Þ set of all
possible floating point values

q is of type float, only
a value that is a member
of the set of all floating point
values can be assigned to q.

Types
Example: ML, primitive type

- val p = ...;

untyped variable ® can assume a value of any type.

-
- val p:real = ...;

Now p only accepts a value
that is the member of the type
real.

Types

Example: Java, constructed type

class Foobar { int i; String s; };

Foobar c = new Foobar();

Now the variable c only accepts values that are members of type Foobar;
F object instantiations of class Foobar.

Types

Example: ML, constructed type

- type foobar = int * string;
- val c:foobar = (1, “two”);

an element of
type foobar.

Types

Example: C, constructed type

int a[3];

the variable a will accept values
which are arrays of 3 integers.

e.g.: int a[3] = {1,2,3};
int a[3] = {7,24,9}

Example: ML, constructed type

- val L : int list = ...;

L will accept values which are
integer lists – more formally, L will
accept values that are members of
of type ‘int list’.

Subtypes

Def: a subtype is a subset of the elements of a type.

Example: Java

Short is a subtype of int: short Ì int

Observations:
(1) converting a value of a subtype to a values of the super-type is

called widening type conversion. (safe)
(2) converting a value of a supertype to a value of a subtype is

called narrowing type conversion. (not safe)

Example: Java

float Ì double

Function Types
C, C++, and ML treat functions as just another data type
that can be manipulated

FFunctions can be passed as values; just as values that belong to other data types
FFunctions belong to function types

Example: in ML consider the function type
real ® int

This type represents the set of all functions from real to int.

We have seen some members of this type:
floor: real ® int
ceil: real ® int
round: real ® int

Function Types

Example: Functions as values
- fun myfun (x:real):int = round(x);
val myfun = fn:real -> int

- val foo = myfun;
val foo = fn:real -> int

- foo(3.4);
val it = 3 : int

Example: Functions as function arguments
- fun myfun(f:real -> int) = …;
- myfun(round);
- myfun(ceil);

F A function is just an element of a particular function set.

Why do we use types?

l Types allow the computer/language system to
assist the developer write better programs.
Type mismatches in a program usually
indicate some sort of programming error.
l Static type checking – check the types of all

statements and expressions at compile time.
l Dynamic type checking – check the types at

runtime.

Type Equivalence
I. Name Equivalence – two objects are of the same type of and only

if they share the same type name.

Example: Java

Class Foobar {
int i;
float f;

}

Class Goobar {
int i;
float f;

}

Foobar o = new Goobar();

Error; even though the types look
the same, their names are different,
therefore, Java will raise an error.

FJava uses name equivalence

Type Equivalence
II. Structural Equivalence – two objects are of the same type if and only if

they share the same type structure.

Example: ML
- type person = int * int * string * string;
- type mytuple = int * int * string * string;
- val joe:person = (38, 185, “married”, “pilot”):mytuple;

Even though the type names are different, ML correctly
recognizes this statement.

F ML uses structural equivalence.

Exercises

l Describe the type associated with the set of
values {-1,-2,-3,-4,…}, call this type Q.

l Describe the type associate with the set of
values {-2,-4,-6,-8,…}, call this type P.

l Is there a subtype-supertype relationship
between this types? If so, what is it?

l Let x be a variable of type Q and y be a
variable of type P, then is the assignment

x := y
a safe assignment? Why? Why not?

l Describe the type associated with set Q ® P.

Take Away

l Types are sets of values, typically with a
common representation and common set of
operations.

l Types in programming languages allows
compilers and interpreters to check for
consistency in your programs.

l Inconsistencies usually show up a type
mismatches.

l Type equivalence between constructed types
can be established in one of two ways, name
equivalence or structural equivalence.

Assignment #5

Assignment # 5 – see website

