Patte I'NS The Essence of Functional Programming

Up to now we have defined functions in a very traditional way:
function name + variable name parameters

Read Chap 7

In functional programming we can exploit the structure of objects during

a function definition by using patterns and pattern matching.

Example: no pattern matching, factorial
- fun fact(x) = if x = 0 then 1 else x*fact(x-1);

Example; with pattern matching, factorial

- fun fact 0\= 1
| fact n~=n * fact(n-1);

x!

1ifx=0

x*(x-1)! otherwise

Very simple pattern: either it is O or not.

Patterns

In order to use patterns we need to extend our ML syntax for
function definitions:

<fun-def> ::= fun <fun-bodies>
<fun-bodies> ::= <fun-body>
| <fun-body> | <fun-bodies>
<fun-body> ::= <fun-name> <pattern> = <expression>
<pattern> ::= any function and operator free expression
(constructors are allowed).

Valid Patterns: Invalid Patterns:
1 1+a

(a,b) f(q)

[2,3]

q..rest

Patterns

Example: Pattern matching on lists. Write a function sumlist that
accepts a list of integer values and returns the sum of the integers
on the list.

-funsumlist ([]) =0
| sumlist(x :: xs) = x + sumlist(xs);

Patterns

Example: write a function that reverses a given list.

-funreverse ([]) =[]
| reverse (x :: xs) = reverse(xs) @ [X];

Patterns

Example: match on nested structures. Assume we have a list of persons
[(32,185,”married”,”pilot™),(28,160, " not-married”,”cook”),...]

we want to write a function that returns the age of the first person on the list.

- fun get1stAge ((age,weight,mstat,profession)::otherpersons) = age;

~ __
T~

here we pattern match on the list as well as
on the tuples that make up the list

- fun get1stAge (L) = #1 hd(L); } same function no pattern matching

Note: here we assume that the list
of persons is never empty!

Anonymous Variables

Consider the following program:

- fun f (0) = “zero”
| f (X) = “non-zero”;
AN
The variable x is never used on the right side of the equation; bad
programming practice.

We can rewrite this program using an anonymous variable:

- fun f (0) = “zero”
| f(_)="non-zero”;
™~
Here we pattern match on the structure but we don’ t exactly care
what the precise values are.

Patterns

Pattern matches can also occur in other places in functional programs.
Consider,

- val (age,weight,mstat,profession) = (38,185, ”married”,”pilot”);

— __
—

pattern!
val age = 38 : int
val weight = 185 : int
val mstat = "married" : string
val profession = "pilot" : string

This is different from

- val joe = (38,185,”married”,”pilot”);

val joe = (38,185,”married”,”pilot”) : int * int * string * string

| ocal Definitions: ‘Let’ Stmt

The aim is to limit the scope of a definition.

Syntax:

<let-expr> ::= let <definitions> in <expr>

<definitions> ::= any valid variable or function definition
<expr> ::= any valid expression

Note: the value of <expr> is the return value of <let-expr>.

Pattern Matching with Let Stmt

Example: Given a list of elements, write a function that returns two lists,,
each with half the elements of the original list.

-funhalve ([1)=([1, [])
| halve ([a]) = ([a], [])
| halve (a::b::rest) =

let

val (x,y) = halve(rest) x and y are local
in [variables.

(a::x,b:y)
end;

Merge Sort

e The halwve function divides a list into
two nearly-equal parts

e This is the first step in a merge sort
e For practice, we will look at the rest

Example: Merge

fun merge (

| merge (

| merge (, yi:iys) =
if (x < y) then x :: merge(xs, y::ys)
else y :: merge(x::xXs, Vys);

1, ys) yS
s, []) XS
S
)

[
X
X

¢ o X

e Merges two sorted lists
e Note: default type for ‘< is int

Example: Merge Sort

fun mergeSort [] = []
| mergeSort [a] = [a]
| mergeSort thelist =
let
val (x,y) = halve thelList
in
merge (mergeSort x, mergeSort y)
end;

e Merge sort of a list

e Typeis int list -> int list, because
of type already found for merge

Merge Sort At Work

— fun mergeSort [] = []
| mergeSort [a] = [a]
| mergeSort thelist =
let
val (x, y) = halve thelist
in
merge (mergeSort x, mergeSort y)
= end;
val mergeSort = fn : int list -> 1int 1list
- mergeSort [4,3,2,1];
val it = [1,2,3,4] : int 1list
- mergeSort [4,2,3,1,5,3,6];
val it = [1,2,3,3,4,5,6] : int list

Nested Function Definitions

You can define local functions, just like local
variables, using a 1let

You should do it for helper functions that you don't
think will be useful by themselves

We can hide halve and merge from the rest of the
program this way

Another potential advantage: inner function can refer

to variables from outer one (as we will see in Chapter
12)

Merge Sort

fun mergeSort
| mergeSort [e]
| mergeSort thelist
let
fun halve
| halve
| halve
let
val (x, vy)
in
(a::x, b:r:y)
end;

fun merge ([], ys) = ys

| merge (xs, []) = xs

| merge (xX::xs, y::ys) =
if (x < y) then x :: merge(xs, y::ys)
else y :: merge(x::xs, ysS);

val (x, y) = halve thelist
in

merge (mergeSort x, mergeSort y)
end;

Exercise

Write the function less(e,L) that returns a list of integers from the list
L each of which is less than the value e.

Homework

Assignment #6 — see website — use pattern matching!

Midterm coming up end of October

