
Patterns The Essence of Functional Programming

Up to now we have defined functions in a very traditional way:
function name + variable name parameters

In functional programming we can exploit the structure of objects during
a function definition by using patterns and pattern matching.

Example: no pattern matching, factorial
- fun fact(x) = if x = 0 then 1 else x*fact(x-1);

x!
1 if x = 0

x*(x-1)! otherwise

Example: with pattern matching, factorial
- fun fact 0 = 1

| fact n = n * fact(n-1);

Very simple pattern: either it is 0 or not.

Read Chap 7

Patterns

In order to use patterns we need to extend our ML syntax for
function definitions:

<fun-def> ::= fun <fun-bodies>
<fun-bodies> ::= <fun-body>

| <fun-body> | <fun-bodies>
<fun-body> ::= <fun-name> <pattern> = <expression>
<pattern> ::= any function and operator free expression

(constructors are allowed).

Valid Patterns:
1
(a,b)
[2,3]
q::rest

Invalid Patterns:
1+a
f(q)

Patterns

Example: Pattern matching on lists. Write a function sumlist that
accepts a list of integer values and returns the sum of the integers
on the list.

- fun sumlist ([]) = 0
| sumlist(x :: xs) = x + sumlist(xs);

Patterns

Example: write a function that reverses a given list.

- fun reverse ([]) = []
| reverse (x :: xs) = reverse(xs) @ [x];

Patterns
Example: match on nested structures. Assume we have a list of persons

[(32,185,”married”,”pilot”),(28,160,”not-married”,”cook”),...]

we want to write a function that returns the age of the first person on the list.

- fun get1stAge ((age,weight,mstat,profession)::otherpersons) = age;

here we pattern match on the list as well as
on the tuples that make up the list

- fun get1stAge (L) = #1 hd(L); same function no pattern matching

Note: here we assume that the list
of persons is never empty!

Anonymous Variables

Consider the following program:

- fun f (0) = “zero”
| f (x) = “non-zero”;

The variable x is never used on the right side of the equation; bad
programming practice.

We can rewrite this program using an anonymous variable:

- fun f (0) = “zero”
| f (_) = “non-zero”;

Here we pattern match on the structure but we don’t exactly care
what the precise values are.

Patterns
Pattern matches can also occur in other places in functional programs.

Consider,

- val (age,weight,mstat,profession) = (38,185,”married”,”pilot”);

val age = 38 : int
val weight = 185 : int
val mstat = "married" : string
val profession = "pilot" : string

pattern!

This is different from

- val joe = (38,185,”married”,”pilot”);
val joe = (38,185,”married”,”pilot”) : int * int * string * string

Local Definitions: ‘Let’ Stmt
The aim is to limit the scope of a definition.

Syntax:

<let-expr> ::= let <definitions> in <expr>
<definitions> ::= any valid variable or function definition
<expr> ::= any valid expression

Note: the value of <expr> is the return value of <let-expr>.

Pattern Matching with Let Stmt
Example: Given a list of elements, write a function that returns two lists,,
each with half the elements of the original list.

- fun halve ([]) = ([], [])
| halve ([a]) = ([a], [])
| halve (a::b::rest) =

let
val (x,y) = halve(rest)

in
(a::x,b::y)

end;

x and y are local
variables.

Merge Sort

l The halve function divides a list into
two nearly-equal parts

l This is the first step in a merge sort
l For practice, we will look at the rest

fun merge ([], ys) = ys
| merge (xs, []) = xs
| merge (x::xs, y::ys) =

if (x < y) then x :: merge(xs, y::ys)
else y :: merge(x::xs, ys);

Example: Merge

l Merges two sorted lists
l Note: default type for ‘<‘ is int

fun mergeSort [] = []
| mergeSort [a] = [a]
| mergeSort theList =

let
val (x,y) = halve theList

in
merge(mergeSort x, mergeSort y)

end;

Example: Merge Sort

l Merge sort of a list
l Type is int list -> int list, because

of type already found for merge

Merge Sort At Work

- fun mergeSort [] = []
= | mergeSort [a] = [a]
= | mergeSort theList =
= let
= val (x, y) = halve theList
= in
= merge(mergeSort x, mergeSort y)
= end;
val mergeSort = fn : int list -> int list
- mergeSort [4,3,2,1];
val it = [1,2,3,4] : int list
- mergeSort [4,2,3,1,5,3,6];
val it = [1,2,3,3,4,5,6] : int list

Nested Function Definitions

l You can define local functions, just like local
variables, using a let

l You should do it for helper functions that you don't
think will be useful by themselves

l We can hide halve and merge from the rest of the
program this way

l Another potential advantage: inner function can refer
to variables from outer one (as we will see in Chapter
12)

fun mergeSort [] = []
| mergeSort [e] = [e]
| mergeSort theList =

let
fun halve [] = ([], [])
| halve [a] = ([a], [])
| halve (a::b::cs) =

let
val (x, y) = halve cs

in
(a::x, b::y)

end;

fun merge ([], ys) = ys
| merge (xs, []) = xs
| merge (x::xs, y::ys) =

if (x < y) then x :: merge(xs, y::ys)
else y :: merge(x::xs, ys);

val (x, y) = halve theList
in
merge(mergeSort x, mergeSort y)

end;

Merge Sort

Exercise

Write the function less(e,L) that returns a list of integers from the list
L each of which is less than the value e.

Homework

Assignment #6 – see website – use pattern matching!

Midterm coming up end of October

