Polymorphism

A closer look at types....

polymorphism = comes from Greek meaning ‘many forms’

In programming:

Def: A function or operator is polymorphic if it has at
least two possible types.




Polymorphism

i) Overloading

Def: An overloaded function name or operator is one that has at least two
definitions, all of different types.

Example: In Java the '+’ operator is overloaded.

String S — “abC” + “def”;
\ +: String * String — String

inti =3+ 5;
AN

+:int * int - int




Polymorphism

Example: Java allows user defined polymorphism with overloaded
function names.

bool f (char a, char b) {

return a == b;
}

bool f (Int d, int b) { f:int*int — bool
return a == b;

f : char * char — bool

}

Note: ML does not allow function overloading




Polymorphism

ii) Parameter Coercion

Def: An implicit type conversion is called a coercion.

Coercions usually exploit the type-subtype relationship because a widening
type conversion from subtype to supertype is always deemed safe — a
compiler can insert these automatically — type coercions.

Example: type coercion in Java
double x;

X =2;
™ the value 2 is coerced from int to double by the compiler




Polymorphism

Parameter coercion is an implicit type conversion on parameters.
Parameter coercion makes writing programs easier — one function

can be applied to many subtypes.

Example: Java

void f (double a) { ... }
int — double
float — double

short — double } alllegal types that can be passed to function f'.
byte < double
char — double )

Note: ML does not perform type coercion
(ML has no notion of subtype).




Polymorphism

iii) Parametric Polymorphism

Def: A function exhibits parametric polymorphism if it has a type
that contains one or more type variables.

Example: ML

- fun f(x,y) = (x = y);
valf=1fn:'a*'a-> bool
- _ Example: C++ and Java

poh:ype C++ and Java have templates
(poly = many) that support parametric polymorphism.




Polymorphism

iv) Subtype Polymorphism

Def: A function or operator exhibits subtype polymorphism if one or more
of its constructed types have subtypes.

Note: one way to think about this is that this is type coercion on
constructed types.




Polymorphism

Example: Java

class Cup{... };
class CoffeeCup extends Cup{ ... };
class TeaCup extends Cup { ... };

TeaCup t = new TeaCup();
Cup ¢ = t;™~ type coercion: TeaCup — Cup

— _

safe! SuberT
void fill (Cup c) {...} uperlype

TeaCup t = new TeaCup();
CoffeeCup k = new CoffeeCup();

fill(t):
fill(k);

} subtype polymorphism




