
Polymorphism

Chap 8

polymorphism º comes from Greek meaning ‘many forms’

In programming:

Def: A function or operator is polymorphic if it has at
least two possible types.

A closer look at types....

Polymorphism

i) Overloading

Def: An overloaded function name or operator is one that has at least two
definitions, all of different types.

Example: In Java the ‘+’ operator is overloaded.

String s = “abc” + “def”;

int i = 3 + 5;

+: String * String ® String

+: int * int ® int

Polymorphism

Example: Java allows user defined polymorphism with overloaded
function names.

bool f (char a, char b) {
return a == b;

}

bool f (int a, int b) {
return a == b;

}

f : char * char ® bool

f : int * int ® bool

Note: ML does not allow function overloading

Polymorphism
ii) Parameter Coercion

Def: An implicit type conversion is called a coercion.

Coercions usually exploit the type-subtype relationship because a widening
type conversion from subtype to supertype is always deemed safe ® a
compiler can insert these automatically ® type coercions.

Example: type coercion in Java

double x;
x = 2;

the value 2 is coerced from int to double by the compiler

Polymorphism

Parameter coercion is an implicit type conversion on parameters.
Parameter coercion makes writing programs easier – one function
can be applied to many subtypes.

Example: Java

void f (double a) { ... }

int Ì double
float Ì double
short Ì double
byte Ì double
char Ì double

all legal types that can be passed to function ‘f’.

Note: ML does not perform type coercion
(ML has no notion of subtype).

Polymorphism

iii) Parametric Polymorphism

Def: A function exhibits parametric polymorphism if it has a type
that contains one or more type variables.

Example: ML

- fun f(x,y) = (x = y);
val f = fn : 'a * 'a -> bool

polytype
(poly º many)

Example: C++ and Java
C++ and Java have templates
that support parametric polymorphism.

Polymorphism
iv) Subtype Polymorphism

Def: A function or operator exhibits subtype polymorphism if one or more
of its constructed types have subtypes.

Note: one way to think about this is that this is type coercion on
constructed types.

Polymorphism
Example: Java

class Cup { ... };
class CoffeeCup extends Cup { ... };
class TeaCup extends Cup { ... };

TeaCup

CoffeeCupCup

SuperType

Subtype

void fill (Cup c) {...}

TeaCup t = new TeaCup();
CoffeeCup k = new CoffeeCup();

fill(t);
fill(k); subtype polymorphism

type coercion: TeaCup ® Cup

safe!

TeaCup t = new TeaCup();
Cup c = t;

