
Higher-Order Programming

From our discussions of data types we know that types such as

int ® int
int * float ® bool
char list ® int

all describe sets of functions – but a data type is a set of data values.

F We can treat functions like data values that are members of a type.

Example:
- floor;
val it = fn : real -> int
- val x = floor;
val x = fn : real -> int

Chap 9

Higher-Order Programming

Def: In higher-order programming functions take functions as
parameters or return functions as return values.

Example: A generic type conversion function from real to int – this functions
takes a real value and a specific type conversion function as arguments
and converts the value according to the specific conversion function.

- fun genconv (x:real, f:real -> int) = f(x);
val genconv = fn : real * (real -> int) -> int

Specific conversion functions:
floor: real ® int
ceil: real ® int
round: real ® int

- genconv(3.2, floor);
val it = 3 : int

- genconv(3.2, ceil);
val it = 4 : int

- genconv(3.2, round);
val it = 3 : int

Anonymous Functions
Sometimes functions are too simple to warrant a full fledged function
definition – ML provides something called anonymous function definitions
for building small functions on the fly.

Syntax:
<anonymous-function> ::= fn <pattern> => <expression>
<pattern> ::= any valid ML pattern
<expression> ::= any valid ML expression

Examples: a simple increment by one function

- fn x => x + 1;
val it = fn : int -> in

- (fn x => x+1) 1;
val it = 2 : int

Anonymous Functions

Why do we bother with anonymous functions?

They are a great way to help us write generic code which then can be
made to do specific things via anonymous functions.

Example: a generic increment function.

- fun geninc (a, f) = f a;
val geninc = fn : 'a * ('a -> 'b) -> 'b

- geninc (2, (fn x => x + 3));
val it = 5 : int

- geninc (2, fn x => x + 1);
val it = 3 : int

Exercises
- fun foo x = x -1;
val foo = ?
- fun goo (x,y:int->int) = y(x);
val goo = ?
- goo(1,foo);
val it = ?

- (fn (x,y) => x+y) (3,4);
val it = ?

- (fn x => x) (fn x => x+1);
val it = ?

- (fn x => x) (fn x => x+1) 1;
val it = ?

For each of these exercises determine the value and type for the
question marks.

Function Currying

Multi-parameter functions are written as a cascade of anonymous functions.

Example:
- fun sum (a,b) = a + b;
val sum = fn : int * int -> int

- fun csum a = (fn b => a + b);
val csum = fn : int -> int -> int

Currying has ramifications on how you call functions:
- sum (1,2);
val it = 3 : int

BUT
- csum 1 2;
val it = 3 : int

no tuples!

Function Currying

A “Curried” function with two arguments is the composition of a named
function with an anonymous function.

Example:
- fun csum a = (fn b => a + b);

anonymous function

named function ‘csum’

Example: partial evaluation
- val p = csum 1;
val p = fn : int -> int
- p 2;
val it = 2 : int

p º (fn b => 1 + b) partially evaluated function!

Function Currying

Example: a function that adds three numbers.

- fun cadd3 a = fn b => fn c => a + b + c;
val cadd3 = fn : int -> int -> int -> int

type of 1st input argument

- cadd3 (1,2,3);
ERROR....

tuple int*int*int; incorrect type for 1st argument

Exercises

- fun times3 (a,b,c) = a * b * c;
val times3 = fn : int * int * int -> int

- fun foo (a,b) = b a;
val foo = fn : 'a * ('a -> 'b) -> 'b

Turn the function given in the exercise into a curried function and give
the type of the resulting function.

