
ML Built-in Functions

Since ML is a functional programming language, many of its built-in
functions are concerned with function application to objects and structures.

In ML, built-in functions are curried ® they expect their arguments as
a sequence of objects separated by spaces NOT as a tuple.

The map Function

The map function accepts two parameters: a function and a list of
objects. It will apply the given function to each object on the list.

Example:

- map (fn x => x + 2) [1,2,3];
val it = [3,4,5] : int list

also works with built-in functions and operators such as the negation
function ~ : int -> int

- map ~ [1,2,3];
val it [~1,~2,~3] : int list

The map Function

map can also be applied to a list of structures.

- map (fn (a,b) => a + b) [(1,2),(3,4)];
val it = [3,7] : int list

The foldr Function

The foldr function works similar to the map function, but instead of producing
a list of values it only produces a single output value.

Syntax:
foldr <binary function> <initial value of output> <list>

Semantics:
- foldr f c [x1, x2, ... , xn-1, xn];
is the same as saying
- f(x1, f(x2, f(x-1,f(xn,c))...));

foldr start at the rightmost object
xn of the list with initial value c

foldr folds a list of values
into a single value starting
with the rightmost element.

The foldr Function
Example:

- foldr (fn (a,b) => a+b) 2 [1,2,3];

® fn(1,fn(2,fn(3,2)));

val it = 8 : int

The foldl Function
You guessed it! Works exactly the same as the foldr function except
that it start computing at the leftmost element:

- foldl f c [x1, x2, ... , xn-1, xn];
is the same as saying
- f(xn, f(xn-1, f(x2,f(x1,c))...)); foldl folds a list of values

into a single value starting
with the leftmost element.

Example:

- foldl (fn (a,b) => a+b) 2 [1,2,3];
=> fn(3,fn(2,fn(1,2)));
val it = 8 : int

foldr and foldl
In most cases foldr and foldl will produce the same results, but consider
the following:
- foldr (fn (a,b) => a^b) “ef” [“ab”,”cd”];
=> fn(“ab”,fn(“cd”,”ef”))
=> “ab”^(“cd”^”ef”)
=> “ab”^”cd”^”ef”
=> “abcdef”
val it = “abcdef” : string

- foldl (fn (a,b) => a^b) “ef” [“ab”,”cd”];
=> fn(“cd”,fn(“ab”,”ef”))
=> “cd”^(“ab”^”ef”)
=> “cd”^”ab”^”ef”
=> “cdabef”
val it = “cdabef” : string

foldr and foldl will only
produce the same results
if the mapped function
is commutative.

Partial Evaluation

l We can create new functions from
curried library functions using partial
evaluation:

- val listinc = map (fn x => x+1);
val listinc = fn : int list -> int list

- listinc [1,2,3];
val it = [2,3,4] : int list

Recursion and Curried Functions

(* original non-curried function *)
fun filter ([],e) = []
| filter (x::xs,e) = if x < e then x::filter(xs,e) else filter(xs,e);

(* curried function in traditional notation *)
fun filtercl [] = (fn e => [])
| filtercl (x::xs) = (fn e => if x < e then x :: filtercl xs e else filtercl xs e);

(* curried function in short hand notation *)
fun filterc [] e = []
| filterc (x::xs) e = if x < e then x :: filterc xs e else filterc xs e;

Note: all parentheses are mandatory in the above examples.

Homework
Assignment #7 – see website

Midterm coming up on Sakai – covers chaps 1 through 9

Review
Week 1
Chapter 1: Programming Languages

features of languages, classes of languages
Chapter 2: Defining Program Syntax

grammars, derivations, formal definition of languages, sentences
Week 2
Chapter 3: Where Syntax Meets Semantics

parse trees as semantics, ambiguous grammars
Chapter 4: Language Systems

structure of IDE/compiler, difference between compiler/interpreter
Week 3
Chapter 5: A First Look At ML

basic expression, tuples, lists
Chapter 6: Types

** a type is a set of values **
Week 4
Chapter 7: A Second Look At ML

patterns
Chapter 8: Polymorphism

overloading, parameter coercion, parametric polymorphism, subtype polymorphism
Week 5
Chapter 9: A Third Look At ML

higher-order programming: *** functions as parameters or return values ***

Review

l Consider the curried function
��fun foo (a:string) = (fn (b:string) => (a,b));

l What is the value and type of the following
computations:
1. foo “100” “101”;
2. �val q = foo "happy"; q "really happy";

l Rewrite this function in the abbreviated
curried style.

Review

l Convert the following function
�
fun pow(b,m) = if m = 0 then 1 else b*pow(b,m-1);

1. to a function using patterns
2. to a function using currying
3. to function using patterns and currying

Review

l Write a curried function hdmap that takes a
function and a list of integers and applies
the function to the first element of the list. If
the list is empty return ~1,

�hdmap = fn : (int -> int) -> int list -> int

l Show that your function works by
computing: hdmap (fn x => x + 1) [3,4]

