
Scope
Def: A definition is anything that establishes a possible binding to a name.

Def: Scope is a programming language tool to limit the visibility of definitions.

Example: Early dialects of Basic did not have scoping rules, all definitions
of all variables were visible in the global scope.

$A = “This is a global string”
...

Function Foo ()
$A = “This is a local string”

...
End
Call Foo ...
$B = $A What is the content of $B?

Problem: When everything is visible everywhere then it is up to the
programmer to control visibility of definitions (e.g. globally unique names).

Chapter 10

Scoping with Namespaces

Def: A namespace is a zone in a programming language which is
populated by names. In a namespace, each name must be unique.

The most common namespace in programming languages is the block.

Scoping with Blocks
Def: A block is any language construct that contains definitions and
delineates the region of the program where those definitions apply.

Example: Java

if (cond) {
int q = ...;

}
else {

int r = ...;

}

block

def. q

def. r

Example: ML

let
val q = ...;

in
...

end

blockdef. q

Nested Blocks

In most modern programming languages blocks can be nested.

Example: Java

if (cond) {
bool q = ...;

while (q) {
int r = ...;

}
}

q
r

Nested Blocks

This can lead to interesting anomalies, consider;

Example: ML

let
val n = 1

in
let

val n = 2
in

n
end

end;

n
n What is the value

of this expression?

Implicit Blocks

Blocks can also be defined implicitly by some language construct.

Example: ML

- fun add (a,b) = a + b;
block

Def: A block is any language construct that contains definitions and
delineates the region of the program where those definitions apply.

Labeled Namespaces

Def: A labeled namespace is any language construct that contains
definitions and delineates a region of the program where those definitions
apply; and also have a name that can be used to access those definitions.

Example: Java

class MyInt {
public static int min = - 32000;
public static int max = 32000;

}

labeled namespace

to access definitions in the labeled namespace:
int i = MyInt.min;

label

Other labeled namespaces:
Java: packages, class
C++: class, namespace
C: struct
ML: structure

Primitive Namespaces

Def: A primitive namespace is a language construct that contains
definitions and delineates a region of the program where those
definitions apply; but the region was defined at language design time
(similar to primitive data types, you can use them but not define them).

Most modern programming languages define two primitive namespaces –
one for user defined variable names and one for type names (both primitive
and constructed).

int q = ...;q, ...

int, float, ...

namespace
(e.g. block, implicit block,
labeled namespace, etc)

primitive namespace
for variable names

primitive namespace
for type names

Primitive Namespaces

Example: ML

- val int = 3;
val int = 3 : int

variable name
type name

Example: Java

class Foo { ... };

myFunc (Foo Foo) {
Foo g = Foo;

}

type variable

type
variable

Observation: Because of the primitive namespaces modern programming
languages never get confused about whether a name is a type or a variable –
they simply look up the name in the corresponding primitive namespace.

