Def: A definition is anything that establishes a possible binding to a name.

Def: Scope is a programming language tool to limit the visibility of definitions.

Example: Early dialects of Basic did not have scoping rules, all definitions
of all variables were visible in the global scope.
$A = “This is a global string”

Chapter 10

Function Foo ()
$A = “This is a local string”

End
Call Foo ...
$B = $A < What is the content of $B?

Problem: When everything is visible everywhere then it is up to the
programmer to control visibility of definitions (e.g. globally unique names).

Scoping with Namespaces

Def: A namespace is a zone in a programming language which is
populated by names. In a namespace, each name must be unique.

The most common namespace in programming languages is the block.

Scoping with Blocks

Def: A block is any language construct that contains definitions and
delineates the region of the program where those definitions apply.

Example: Java Example: ML

«— Dblock

Nested Blocks

In most modern programming languages blocks can be nested.

Example: Java

if (cond) {

Nested Blocks

This can lead to interesting anomalies, consider;

Example: ML

What is the value
of this expression?

Implicit Blocks

Def: A block is any language construct that contains definitions and
delineates the region of the program where those definitions apply.

Blocks can also be defined implicitly by some language construct.

Example: ML

Labeled Namespaces

Def: A labeled namespace is any language construct that contains
definitions and delineates a region of the program where those definitions
apply; and also have a name that can be used to access those definitions.

Example: Java

- labeled namespace
'

}

to access definitions in the labeled namespace:

inti = Mylnt.min;

\

label

Other labeled namespaces:
Java: packages, class
C++: class, namespace

C: struct

ML.: structure

Primitive Namespaces

Def: A primitive hamespace is a language construct that contains
definitions and delineates a region of the program where those
definitions apply; but the region was defined at language design time
(similar to primitive data types, you can use them but not define them).

Most modern programming languages define two primitive namespaces —
one for user defined variable names and one for type names (both primitive

and constructed).

primitive namespace
for variable names

\

«—— hamespace
(e.g. block, implicit block,
labeled namespace, efc)

__—r

primitive namespace
for type names

Primitive Namespaces

Example: Java

Example: ML

_val int = 3: class Foo { ... };

val int =3 :int type variable
D ¥ /

N type name
variable name myFunC (FOO FOO) {
Foo g = Foo;
} X A

type

variable

Observation: Because of the primitive namespaces modern programming
languages never get confused about whether a name is a type or a variable —
they simply look up the name in the corresponding primitive namespace.

