
Where are We?
Java: read chapters 13, 15, and 17
This should be mostly a review…with the exception perhaps of exceptions.

Assignment #8: see website

Translator

Problem: Build a simple translator from arithmetic expressions to a simple stack machine.

The translator accepts the following language:

G: <expression> ::= <mulexp> ‘+’ <mulexp>
| <mulexp> ‘-’ <mulexp>

<mulexp> ::= <rootexp> ‘*’ <rootexp>
| <rootexp> ‘/’ <rootexp>

<rootexp> ::= ‘(‘ <rootexp> ‘)’
| number

The translator generates the following stack machine language:

G’: <comlist> ::= <comlist> <command> | <empty>
<command> ::= <arithmetic> | <stack>
<arithmetic> ::= add | subtract | multiply | divide
<stack> ::= push number | pop

Base your implementation on the calculator code given in the book.

Translator

l Recursive descent parser…one function for each non-
terminal

l Given the expression (1+2)*3 your translator should
produce:

push 1.0
push 2.0
add
push 3.0
multiply

l Note: it is assumed that the arithmetic commands pop
the values off the stack that they use.

l Java code for calculator is available on the web (don’t
copy it from the book)

Java Exceptions

The term exception is shorthand for the phrase "exceptional event."

Def: An exception is an event, which occurs during the execution
of a program, that disrupts the normal flow of the program's
instructions.

Source: http://java.sun.com/docs/books/tutorial/essential/exceptions/definition.html

When an error occurs within a method, the method creates an object and
hands it off to the runtime system. The object, called an exception object,
contains information about the error, including its type and the state of the
program when the error occurred. Creating an exception object and handing
it to the runtime system is called throwing an exception.

After a method throws an exception, the runtime system attempts to find
something to handle it. The set of possible "somethings" to handle the exception
is the ordered list of methods that had been called to get to the method where the
error occurred. Handlers catch exceptions.

Java Exceptions

Java Exceptions

try {
// Perform work here

} catch (Exception e) {
// Log the exception and continue
System.out.println("Unexpected exception", e);

}

// In some function h()
throw new Exception("optional text here");

Checked vs. Unchecked
Exceptions

l Unchecked exceptions :
l represent defects in the program (bugs) - often

invalid arguments passed to a non-private method.
To quote from The Java Programming Language,
by Gosling, Arnold, and Holmes :

"Unchecked runtime exceptions represent conditions that,
generally speaking, reflect errors in your program's logic and
cannot be reasonably recovered from at run time."

l a method is not obliged to establish a policy for the
unchecked exceptions thrown by its implementation
(and they almost always do not do so)

Checked vs. Unchecked
Exceptions

l Checked exceptions :
l represent invalid conditions in areas outside the

immediate control of the program (invalid user
input, database problems, network outages, absent
files)

l a method is obliged to establish a policy for all
checked exceptions thrown by its implementation
(either pass the checked exception further up the
stack, or handle it somehow)

Java Exceptions

Java Exceptions
The Exception class behaves just like any other class:

Class MyException extends Exception {
MyException (List items) {…};
void printList() {…}

}

