
Memory Management

For most programming languages memory management has two parts:

(1) Static - global data, compiled code, runtime system
(2) Dynamic - runtime stack (activation record stack), heap (!)

Chap. 14

Typical Memory Layout

A typical memory layout for
languages such as C and Java

Heap Manager

Stack Pointer

0

FF..FF

static

dynamic

Compiled code,
RTS,
Library code

Global data

Heap

Runtime stack
NOTE: if the runtime stack and
the heap meet Þ out of memory

The Heap
Runtime systems allocate dynamically created objects on the heap by a
call to the heap manager.

In Java the heap manager is called with the new keyword.

In C the heap manager is called using the malloc function.

Observation:
In languages like Java and ML heap memory is reclaimed by the heap
manager automatically via garbage collection when it is no longer used.

In C the programmer has to explicitly manage heap memory with malloc/free function
calls. This is error prone and leads to the (in)famous dangling pointer reference (free
called too early) and the memory leak (free never called) problems.

Example C (Memory Leak)
Program Heap Manager

struct Object * o;

void f()
{

o = malloc(sizeof(struct Object));

struct Object * p = o;

o = NULL;

}

(pop activation record off the runtime stack)

o: Object

o: Object

p:

o: Object

p:

Note: the heap manager has not way of knowing
that this memory is no longer used Þmemory leak

Object

p:

o:

Example C (Dangling Pointer)
Program Heap Manager

void f()
{

struct Object * o = malloc(sizeof(struct Object));

free(o);

struct Foo * p = malloc(sizeof(struct Foo));

o->ObjectAttribute = value;

p->Print();
free(p);

}

o: Object

o: Object

Dangling Pointer

o: Object

p:
Foo

Corruption of the p object!

Example Java (Garbage Collection)

Program Heap Manager

void f()
{

Object o = new Object();

Object p = o;

p = null;

}

(pop activation record off the runtime stack)

Java uses a garbage collection
technique called reference counting.

o: Object2

p:

o: Object1

p:

o: Object1

Reference Count

o: Object0

p:

The heap manager notices that this memory
is no longer used and therefore can safely
delete it.

