
Logic as a Programming Language

l Logic can be considered the oldest programming
language

l Aristotle invented propositional logic over 2000 years ago
in order to prove properties of formal arguments

l Propositions - simple statements that are either true or
false; e.g. Betty wears a white dress. Today is Sunday.

l Propositional Logic º propositions + rules of inference
l Most famous inference rule: modus ponens

(1) Inference is the act or process of drawing a conclusion based solely on what one already knows.
(2) Rule of inference is a scheme for constructing valid inferences.

Let A and B be propositions, then

A implies B
A is true

\ B is true

HW:
Read Section 1 online tutorial
available on the CSC301
Prolog page. (first tutorial)

Chap 19 & 20

Propositional Logic
Example:

If Betty wears a white dress then today is Sunday.
Betty wears a white dress.

--
\ Today is Sunday.

A fundamental problem with propositional logic is that it is not powerful
enough to encode general knowledge - we would like to say things like:

All objects that are considered human are mortal.

Due to the fact that this sentence is not simple it can not be considered
a proposition. But these kind of sentences are key in describing
general knowledge.

Quantification

Friedrich Ludwig Gottlob Frege
Philosopher and Logician

o In 1879 Gottlob Frege introduced the
predicate calculus (‘Begriffsschrifft’)

o Today predicate calculus is more commonly
known as First Order Logic.

o This logic solves the problems of propositional
logic by introducing three new structures:
predicates, universal quantification, and
existential quantification.

First-Order Logic

l Quantified Variables
l Universally quantified variables

"X – for All objects X

l Existentially quantified variables

$Y – there Exists an object Y

First-Order Logic

l Predicates
l Predicates are functions that map their arguments into true/false
l The signature of a predicate p(X) is

p: Objects ® { true, false }

l Example: human(X)
l human: Objects ® { true, false }
l human(tree) = false
l human(paul) = true

l Example: mother(X,Y)
l mother: Objects ´ Objects ® { true, false }
l mother(betty,paul) = true
l Mother(giraffe,peter) = false

First-Order Logic

l We can combine predicates and
quantified variables to make statements
on sets of objects
l $X[mother(X,paul)]

l there exists an object X such that X is the
mother of Paul

l "Y[human(Y)]
l for all objects Y such that Y is human

First-Order Logic

l Logical Connectives: and, or, not
l $F"C[parent(F,C) and male(F)]

l There exists an object F for all object C such
that F is a parent of C and F is male.

l "X[day(X) and (wet(X) or dry(X))]
l For all objects X such that X is a day and X is

either wet or dry.

First-Order Logic

l If-then rules: A ® B
l "X"Y[parent(X,Y) and female(X) ® mother(X,Y)]

l For all objects X and for all objects Y such that if X is a
parent of Y and X is female then X is a mother.

l "Q[human(Q) ® mortal(Q)]
l For all objects Q such that if Q is human then Q is mortal.

Horn Clause Logic

In horn clause logic the form of the WFF’s is
restricted:

P1 Ù P2 Ù … Ù Pn-1 Ù Pn ® P0

Where P0 , P1 , P2, … Pn-1, Pn are predicates.
Conjunctions only!

Single predicate in consequent

Proving things is computation!

Use resolution to reason with horn clause expressions - resolution mimics
the modus ponens using horn clause expressions.

Advantage: this can be done mechanically (Alan Robinson, 1965)

J. Alan Robinson: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1): 23-41 (1965)

“Deduction is Computation”

Basic Prolog Programs

Prolog º Programming in Logic

Facts - a fact constitutes a declaration of a truth; in Prolog it has to
to be a positive assertion.

Prolog Programs - a Prolog program is a collection of facts (…and rules,
as we will see later).

Example: a simple program

male(phil).
male(john).
female(betty).

Facts, Prolog will treat these as true and enters
them into its knowledgebase.

We execute Prolog programs by posing queries on its knowledgebase:

?- male(phil).
true - because Prolog can use its knowledgebase to prove true.

?- female(phil).
false - this fact is not in the knowledgebase.

Prompt

Prolog - Queries & Goals
A query is a way to extract information from a logic program.

Given a query, Prolog attempts to show that the query is a logical
consequence of the program; of the collection of facts.

In other words, a query is a goal that Prolog is attempting to satisfy (prove true).

When queries contain variables they are existentially quantified, consider

?- parent(X,liz).

The interpretation of this query is: prove that there is at least one object X
that can be considered a parent of liz, or formally, prove that

$x[parent(x,liz)]

holds.

NOTE: Prolog will return all objects for which a query evaluates to true.

A Prolog Program

A Family Tree

% a simple prolog program
female(pam).
female(liz).
female(ann).
female(pat).

male(tom).
male(bob).
male(jim).

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

Parent
Relation

Example Queries:
?- female(pam).
?- female(X). $X[female(X)]?
?- parent(tom,Z).
?- father(Y).

Compound Queries
A compound query is the conjunction of individual simple queries.

Stated in terms of goals: a compound goal is the conjunction of individual
subgoals each of which needs to be satisfied in order for the compound goal
to be satisfied. Consider:

?- parent(X,Y) , parent(Y,ann).
or formally,

$X,Y[parent(X,Y) Ù parent(Y,ann)]

When Prolog tries to satisfy this compound goal, it will make sure that the
two Y variables always have the same values.

Prolog uses unification and backtracking in order to find all the solutions
which satisfy the compound goal.

Homework

l Assignment #10 (see website)

