
Prolog Rules
Prolog rules are Horn clauses, but they are written “backwards”, consider:

"X,Y[female(X) Ù parent(X,Y) ® mother(X,Y)]

is written in Prolog as

mother(X,Y) :- female(X) , parent(X,Y) .

Implies (“think of ¬”)

“and”

head body

You can think of a rule as introducing a new “fact” (the head), but the fact is 
defined in terms of a compound goal (the body).  That is, predicates defined as
rules are only true if the associated compound goal can be shown to be true.

Prolog rules a implicitly
universally quantified!



Prolog Rules
% a simple prolog program
female(pam).
female(liz). 
female(ann). 
female(pat). 

male(tom). 
male(bob). 
male(jim). 

parent(pam,bob). 
parent(tom,bob). 
parent(tom,liz). 
parent(bob,ann).
parent(bob,pat). 
parent(pat,jim).

mother(X,Y) :- female(X),parent(X,Y).  �

Queries:
?- mother(pam,bob).
?- mother(Z,jim).
?- mother(P,Q).



Prolog Rules

The same predicate name can be defined by multiple rules:

sibling(X,Y) :- sister(X,Y) . 
sibling(X,Y) :- brother(X,Y).



Another Simple Prolog Program
Consider the program relating humans to mortality:

mortal(X) :- human(X).
human(socrates).

We can now pose the query:

?- mortal(socrates).

True or false?



Declarative vs. Procedural 
Meaning

When interpreting rules purely as Horn clause logic statement ® declarative

When interpreting rules as “specialized queries”® procedural

Observation: We design programs with  declarative meaning in our minds,
but the execution is performed in a procedural fashion.

Consider:

mother(X,Y) :- female(X),parent(X,Y).



Lists & Pattern Matching

l The unification operator: =/2
l The expression A=B is true if A and B are terms 

and unify (look identical)

arity

?- a = a.
true

?- a = b.
false

?- a = X.
X = a

?- X = Y.
true

Read Section 2
of Prolog Tutorial
online



Lists & Pattern Matching

l Lists – a convenient way to represent abstract 
concepts
l Prolog has a special notation for lists.

[a]
[a,b,c]
[ ]

Empty 
List

[ bmw, vw, mercedes ] 
[ chicken, turkey, goose ]



Lists & Pattern Matching

l Pattern Matching in Lists

?- [ a, b ] = [ a, X ].
X = b

?- [ a, b ] = X.
X = [ a, b ]

But:

?- [ a, b ] = [ X ].
no

l The Head-Tail Operator: [H|T]

?- [a,b,c] = [X|Y];
X = a
Y = [b,c]

?- [a] = [Q|P];
Q = a
P = [ ]



Lists - the First Predicate

The predicate first/2: accept a list in the first argument and return 
the first element of the list in second argument.

first(List,E) :- List = [H|T], E = H;



Lists - the Last Predicate

The predicate last/2: accept a list in the first argument and return 
the last element of the list in second argument.

Recursion: there are always two parts to a recursive definition;
the base and the recursive step.

last([A],A).
last([A|L],E) :- last(L,E).



Lists - the Append Predicate
The append/3 predicate: accept two lists in the first two parameters, append 
the second list to the first and return the resulting list in the third parameter.

Hint: use recursion.

append([ ], List, List).
append([H|T], List, [H|Result]) :- append(T, List, Result).



The halve/3 Predicate

l Design the predicate halve/3 that takes 
a list as its first argument and returns two 
list each with half the elements of the 
original list (similar to the function halve
we studied in ML).



Homework

l Assignment 11: see website


