
Formal Semantics

The structure of a language defines its syntax, but what defines
semantics or meaning?

Þ Behavior!

The most straight forward way to define semantics is to provide a
simple interpreter for the programming language that highlights the
behavior of the language,

Þ Operational Semantics

Chapter 23

Operational Semantics
Let’s develop an operational semantics for a simple programming
language called ONE;

ONE: <exp>* ::= <exp> + <mulexp> | <mulexp>
<mulexp> ::= <mulexp> * <rootexp> | <rootexp>
<rootexp> ::= (<exp>) | <constant>
<constant> ::= all valid integer constants

Note: The grammar is unambiguous, both precedence and associativity
rules of “standard” arithmetic are observed.

Do the following sentences belong to L(ONE)? Why? Why not?
s = 1 + 2 * 3
s = (1 + 2) * 3
s = a + 3

Abstract Syntax Trees
We want to define an operational semantics, i.e., an abstract interpreter
for the language, but parse trees are not very convenient, too many
non-terminal symbols Þ Abstract Syntax Tree (AST)

<exp>

<exp> + <mulexp>

3

<mulexp> * <rootexp>

2 1

<mulexp>

<rootexp> <rootexp>

+

1

2

*

3

Þ

Transformation Rules:

<N>

T
Þ T

<N>

A op B
Þ

op

A B
Note: This rule also applies to
unary operators and operators
with arity > 2.

Observations

Definition: An abstract syntax tree is a finite, labeled, directed tree,
where the internal nodes are labeled by operators, and the leaf nodes
represent the operands of the node operators. -Wikipedia, 2006

Observation: The abstract syntax tree is a simplified form of the parse
tree: same order as the parse tree, but no non-terminals.

ASTs & Parentheses

l What happens to parentheses in the AST representation of a
program?

l They are not needed!
l ASTs naturally represent associativity and precedence relations.
l Consider: (1 + 2) * 3
l Parentheses do not contribute to computations, therefore the

following tree transformations can be applied:

<N>

(T)
Þ

()

T
Þ T

Prolog ASTs
We can represent ASTs in Prolog:

+

A B

*

A B

c (constant)

Þ

Þ

Þ

plus(A,B)

times(A,B)

const(c)

+

1

2

*

3

ß

plus(const(1),times(const(2),const(3)))

ONE: Prolog Interpreter

val1(plus(X,Y),Value) :-
val1(X,XValue),
val1(Y,YValue),
Value is XValue + YValue.

val1(times(X,Y),Value) :-
val1(X,XValue),
val1(Y,YValue),
Value is XValue * YValue.

val1(const(X),Value) :- Value = X.

A simple interpreter that computes a semantic value for syntactic
constructs, the computation of this semantic value can be interpreted
as the behavior: val1 / 2, AST input and semantic value as output.

?- val1(const(1),X).

X = 1

Yes
?- val1(plus(const(1),const(2)),X).

X = 3

Yes
?- val1(plus(const(1),times(const(2),const(3))),X).

X = 7

Yes

Exercises

l Extend the grammar for language ONE with the subtraction
operator

l Extend the operational semantics appropriately, e.g.,
l 6 – 3 should give the value 3
Assume that the abstract syntax of this operator is sub(x,y).

l Compute the semantic value for the following expressions:
l sub(3,1)
l sub(4,2)

Exercises

l Extend the grammar for language ONE with the ‘!’ factorial
operator

l Extend the operational semantics appropriately, e.g.,
l 3! should give the value 6
Assume that the abstract syntax of this operator is fact(x).

l Compute the semantic value for the following expressions:
l fact(3)
l fact(4)

